Ideas in Mathematics Math 170, Spring 2016 Assignment 8, part 1

- 1. Pretend you're back in third grade. Solve the following division problems, writing out the quotient and remainder.
- 2. Solve each congruence relation with a number in $\{0, 1, \ldots, m-1\}$, where m is the modulus.

• $19 \equiv 6 \pmod{13}$	• $23 \equiv \pmod{13}$
• $-5 \equiv \pmod{4}$	• $4^{13} \equiv \pmod{17}$
• $1557 \equiv \pmod{4}$	• $17^6 \equiv \pmod{15}$
• $-21 \equiv \pmod{11}$	• $17^{357} \equiv \pmod{16}$

3. Complete the following multiplication table for arithmetic mod 7.

X	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Ideas in Mathematics Math 170, Spring 2016 Assignment 8, part 2

- 4. Let n be an even integer. Show that $n^2 \equiv 0 \pmod{4}$.
- 5. Let n be an odd integer. Show that $n^2 \equiv 1 \pmod{4}$.
- 6. Using the results from Questions 4 and 5, prove that there are no integers a and b such that $a^2 + b^2 \equiv 3 \pmod{4}$.
- 7. Prove that a number is divisible by 3 if and only if the sum of its digits (written in base 10) is divisible by 3. This proof is very similar to a proof we covered in class.
- 8. In arithmetic modulo m, we can define the square root of a number a to be a number b such that $a \equiv b^2 \pmod{m}$. For example, $1 \equiv 1^2 \pmod{5}$ and $1 \equiv 4^2 \pmod{5}$, so 1 and 4 are both "square roots" of 1 in arithmetic mod 5. For this problem, consider only square roots smaller than m.

Consider arithmetic modulo m for m = 6, 9, and 12. For each m, list which numbers in $\{0, 1, \ldots, m-1\}$ have square roots, and list what those square roots are. Do some numbers in $\{0, 1, \ldots, m-1\}$ have more than 2 square roots? Do some numbers have only 1 square root? Do some numbers have no square roots?

9. Read Chapter 1 "Why Numbers Count" from *The Language of Mathematics:* Making the Invisible Visible, by Keith Devlin.