Ideas in Mathematics
 Math 170, Spring 2016
 Assignment 8, part 1

1. Pretend you're back in third grade. Solve the following division problems, writing out the quotient and remainder.

- $7 / 3 \quad 2$ r 1
- $19 / 2$
- 75/19
- 293/17
- $183 / 23$
- 8911/239
- $2^{15} / 21$
- $10^{7} / 19$

2. Solve each congruence relation with a number in $\{0,1, \ldots, m-1\}$, where m is the modulus.

- $19 \equiv 6 \quad(\bmod 13)$
- $-5 \equiv(\bmod 4)$
- $1557 \equiv \quad(\bmod 4)$
- $-21 \equiv \quad(\bmod 11)$
- $23 \equiv \quad(\bmod 13)$
- $4^{13} \equiv \quad(\bmod 17)$
- $17^{6} \equiv \quad(\bmod 15)$
- $17^{357} \equiv \quad(\bmod 16)$

3. Complete the following multiplication table for arithmetic mod 7 .

	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Ideas in Mathematics
 Math 170, Spring 2016
 Assignment 8, part 2

4. Let n be an even integer. Show that $n^{2} \equiv 0(\bmod 4)$.

5 . Let n be an odd integer. Show that $n^{2} \equiv 1 \quad(\bmod 4)$.
6. Using the results from Questions 4 and 5, prove that there are no integers a and b such that $a^{2}+b^{2} \equiv 3 \quad(\bmod 4)$.
7. Prove that a number is divisible by 3 if and only if the sum of its digits (written in base 10) is divisible by 3 . This proof is very similar to a proof we covered in class.
8. In arithmetic modulo m, we can define the square root of a number a to be a number b such that $a \equiv b^{2} \quad(\bmod m)$. For example, $1 \equiv 1^{2}(\bmod 5)$ and $1 \equiv 4^{2} \quad(\bmod 5)$, so 1 and 4 are both "square roots" of 1 in arithmetic $\bmod 5$. For this problem, consider only square roots smaller than m.

Consider arithmetic modulo m for $m=6,9$, and 12 . For each m, list which numbers in $\{0,1, \ldots, m-1\}$ have square roots, and list what those square roots are. Do some numbers in $\{0,1, \ldots, m-1\}$ have more than 2 square roots? Do some numbers have only 1 square root? Do some numbers have no square roots?
9. Read Chapter 1 "Why Numbers Count" from The Language of Mathematics: Making the Invisible Visible, by Keith Devlin.

