Ideas in Mathematics Math 170, Spring 2016 Assignment 11, part 1

1. Indicate whether the given set is closed under the given binary operator.

(a) $\underline{\mathbb{N}, a \times b}$ close	d (d) $\{-2, -1, 0, 1, 2\}, a+b$
(b) $\underline{\mathbb{Z}}, a+b$	(e) $\{1, 2, 4, 5, 7, 8\}, a \times b \mod 9$
(c) $\{0, 3, 6, 9\}, a + b \mod 12$	(f) $\underline{\mathbb{Q}}, (a+b)/2$

2. Indicate the identity element of the given set and operator, or state that there is no identity.

(a) $\underline{\mathbb{N}, a \times b}$ 1	(d) $\{-2, -1, 0, 1, 2\}, a+b$
(b) $\underline{\mathbb{Z}}, a+b$	(e) $\{1, 2, 4, 5, 7, 8\}, a \times b \mod 9$
(c) $\{0,3,6,9\}, a+b \mod 12$	(f) $\underline{\mathbb{Q}}, (a+b)/2$

3. For each corresponding set and operator in Question 2, find the inverses of the given elements; if an element has no inverse in the given set under the given operator, state that.

(a) $2, 5, 12, 1$	no inverses	(d) $-1, 0, 1, 2$
(b) $4, -3, 0, 1$		(e) $\underline{1, 5, 7, 8}$
(c) $0, 3, 6, 9$		(f) <u>1, 2, 3, 4</u>

4. For each shape below, (a) write down its rotational symmetries, and (b) draw lines indicating its mirror symmetries. The first example is solved.

Ideas in Mathematics Math 170, Spring 2016 Assignment 11, part 2

- 5. Commutativity. A square has four rotational symmetries $(0^{\circ}, 90^{\circ}, 180^{\circ}, \text{and } 270^{\circ})$, and four mirror symmetries. These eight symmetries constitute a group under the binary operation of performing one transformation after the other; this group is sometimes called D_4 .
 - Find two elements a, b in D_4 so that $a \star b = b \star a$.
 - Find two elements a, b in D_4 so that $a \star b \neq b \star a$.
- 6. Experimental mathematics. Two important classes of symmetry groups are the cyclic groups and dihedral groups. If a shape has n distinct rotations (including the rotation by 0 degrees) and no other symmetries, then its associated symmetry group is known as the cyclic group C_n . If a shape has n distinct rotations AND n distinct mirrors, then the associated group is known as the **dihedral group** D_n .

Almost all tire rims have associated symmetry groups C_n or D_n (for example C_5 and D_7 for the examples above). Look at 25 cars and record the associated symmetry group of the rims of each. Tabulate your results; list symmetry groups in order of decreasing popularity.

7. In three dimensions, shapes can have multiple axes of rotation. The **order** of a rotational axis is the number of rotational symmetries about that axis. Consider for example a line passing through two opposite corners of a cube; its order is 3, since the cube can be rotated 0°, 120°, or 240° about that axis.

Think about each of the five platonic solids. Each have multiple axes of different orders. For example, the tetrahedron has 3 rotational axes of order 2, and 4 rotational axes of order 3. Think about this. Now determine the number of rotational axes of each order, for the remaining four platonic solids. All orders are between 2 and 5. This problem will require visualization and thinking.

