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5 Graph Theory

Graph theory – the mathematical study of how collections of points can be con-
nected – is used today to study problems in economics, physics, chemistry, soci-
ology, linguistics, epidemiology, communication, and countless other fields. As
complex networks play fundamental roles in financial markets, national security,
the spread of disease, and other national and global issues, there is tremendous
work being done in this very beautiful and evolving subject.

The first several sections covered number systems, sets, cardinality, rational
and irrational numbers, prime and composites, and several other topics. We
also started to learn about the role that definitions play in mathematics, and
we have begun to see how mathematicians prove statements called theorems
– we’ve even proven some ourselves. At this point we turn our attention to a
beautiful topic in modern mathematics called graph theory. Although this area
was first introduced in the 18th century, it did not mature into a field of its own
until the last fifty or sixty years. Over that time, it has blossomed into one of
the most exciting, and practical, areas of mathematical research.

Many readers will first associate the word ‘graph’ with the graph of a func-
tion, such as that drawn in Figure 4. Although the word graph is commonly

Figure 4: The graph of a function y = f(x).

used in mathematics in this sense, it is also has a second, unrelated, meaning.
Before providing a rigorous definition that we will use later, we begin with a
very rough description and some examples.

The elementary pieces of graphs are quite simple: points and connections be-
tween them. Figure 5 shows several points and connections between some pairs
of points. Each point can represent a person, a city, a webpage, or any other
object. A connection between two points indicates some relationship between
those vertices. For example, connections between two points might represent
an existing flight route between two cities, a Facebook friendship between two
people, or a pair of webpages that are linked to one another. Graph theory
studies networks which can be described in this simplistic manner, as a set of
points and connections between them.
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Figure 5: A graph, consisting of points and connections between them.

Example 1. We begin by considering several concrete examples to moti-
vate our interest in studying graphs. Figure 6 shows a 1972 map of flight routes

Figure 6: US cities connected by direct Delta Air Lines flights.

serviced by Delta Air Lines. Each black dot indicates a city or airport, and red
curves indicates flight routes between pairs of cities. In studying such a map
we might consider several very practical questions: Can a traveler leaving Lex-
ington, Kentucky reach his or her destination in Los Angeles flying only Delta
flights? If yes, what is the shortest route? What is the maximum number of
flights one would need to take between any pair of cities in this map? The reader
might notice that some cities are directly connected by flight routes to very few
other cities, while other (such as Chicago, Atlanta, and Miami) are connected
to many; cities directly connected to many other cities are oftentimes called
hubs. One might wonder how adding extra flights between hubs will minimize
the average number of connections necessary to travel between di↵erent cities.
These, any many more questions, are routinely asked when studying maps of
this kind.
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Example 2. A second exceptionally interesting class of graphs are those
found in social networks. In such a graph, each vertex might represent a person,
and edges can represent pairs of people who are friends on Facebook. Such
graphs raise many interesting questions studied by applied mathematicians and
social scientists. For example, is there a good way to estimate the potential
influence of various people in a social network? Naively, we might consider the
number of friends each person has (or, equivalently, the number of edges incident
with each vertex) in determining potential influence. However, the number of
Facebook friends might be an inaccurate means of determining influence for the
following reason. Consider Jack and Jill, two random Facebook users. Jack has
500 friends, but each of those friends has only 10 friends each. Jill has only 200
friends, but each of her friends has roughly 500 friends themselves. While in
some sense Jack is more popular than Jill, he has many fewer friends of friends
than does Jill. Of the two, Jill might be the more influential.

When considering the Facebook graph, we might also look for groups of
people, each of whom is friends with everyone else in that group. In graph
theory, such a subset of vertices is known as a clique. Much cutting-edge research
in graph theory studies structural features of graphs, such as cliques.

One important di↵erence between the two examples is the way in which they
are drawn. In the first example, cities can be placed on a map in a location
corresponding to its actual geographic location. There is a strong geometrical
component to the information conveyed by this graph. In the second example,
on the other hand, there is no clear way in which to draw the corresponding
graph. People do not have unambiguous positions. Therefore, if we are to study
a graph of a social network, we will only care about the “graph structure”, that
is the way in which points are connected, but ignore data regarding positions
of the particular points.

Example 3. A third graph that is even more ubiquitous than social net-
works is that associated with the world-wide web itself. Imagine that we abstract
each webpage on the internet as a vertex. An edge between vertex A and B
might indicate the existence of some link on A that directs a web-surfer to B.
Of course this graph is extremely large (some estimates place this number at
over one trillion), and its structure is very complex. However, we might again
ask about certain features of this graph. In the 1990’s, two graduate students at
Stanford developed a way of estimating the importance of a webpage by consid-
ering structural features of the graph of all webpages. These graduate students,
Larry Page and Sergey Brin, ultimately converted their understanding of graphs
into a very practical algorithm called PageRank, which has transformed Google
into the largest and most successful search engine of the 21st century. This
example introduced a new level of structure beyond what we have seen in the
previous examples. In particular, in prior examples, relationships were symmet-
ric in the sense that if A was connected to B, then B, of course, was connected to
A. This is certainly the case in the Facebook network, as Jack cannot be friends
with Jill if Jill is not also friends with Jack. Likewise, in the airline industry,
if a traveler can fly from city A to city B on a given airline, it is generally the
case that they can also fly from city B to city A. The world-wide web, however,
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Figure 7: A directed graph, consisting of points and directed connections be-
tween them.

provides a more sophisticated kind of graph. It is certainly possible that web-
page A links to B without webpage B linking to webpage A. The reader can
certainly think for themselves of examples of networks that are non-symmetric.
Graphs of such networks are called directed graphs. The graphs that we will
consider in this class will all be undirected graphs.

5.1 Basics

We begin by describing some of the basics of graphs. Roughly speaking, a graph
is a set of points and connections between those points; the points are called
vertices and the connections are called edges. A more formal approach to
defining a graph is given by the following:

Definition 13. A graph G is an ordered pair of sets (V,E). Each element of

E is a two-element subset of V . Each element of V is called a vertex and each

element of E is called an edge.

The definition uses sets to define a new mathematical object called a graph.
Keeping in mind our previous example, V can be a set of cities, people, or web-
sites. Edges are two-element subsets of V indicating some relationship between
those two elements.

Although sets can be thought of abstractly – as a pair of sets with certain
properties – it is often convenient to think about graphs visually. For relatively
small graphs, we can draw a point for each vertex, and can draw edges between
vertices to indicate edges. Consider for example a graph given by V = {a, b, c, d}
and E = {{a, b}, {a, c}, {a, d}}. A representation of that graph is shown in
Figure 8.

Figure 8: A graph consisting of four vertices and three edges.
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Degree

One important property, perhaps the most important property, of a vertex v is
the number of other vertices with which it is connected.

Definition 14. The degree of a vertex v is the number of edges incident with

v; equivalently, it is the number of elements of E of which v is itself an element.

The degree of a vertex v is oftentimes written deg(v).

In the example illustrated in Figure 8, the degree of a is 3, and the degree
of b, c, and d is 1. Note that graphs can have vertices that are not connected
to any other vertex; the degree of such vertices is 0. If a graph has no edges,
then all of its vertices have degree 0. Note also that a graph with n vertices
(|V | = n) can have vertices with degree at most n� 1, since any vertex can be
connect to at most the other n� 1 vertices.

Relationship of Degrees to Edges

The degrees of the vertices give us one way of counting the number of edges in
a graph. More specifically, the following is true for all graphs.

Theorem 7. For all graphs, the sum of degrees over all vertices is equal to twice

the number of edges. In symbols,

P
i

deg(v
i

) = 2|E|, where v
i

are the vertices

of the graph.

Proof. If an edge is added between vertices u and v of a graph, then the degrees
of u and v each increase by 1. Therefore, each edge increases the sum of all
degrees by two.

Example 1

Some graphs have the property that all vertices are connected in some sense:

Definition 15. A graph is connected if one can “travel” from any vertex to

any other vertex along a series of edges. A graph that is not connected is called

disconnected.

If we think of a graph of the New York City subway system, in which vertices
are subway stops and edges indicate direct trains from one subway stop to the
next, then this graph is connected. It is always possible to reach any station from
any other station in the system. On the other hand, if we consider the Facebook
graph, in which vertices are people and edges indicate a pair of people that are
friends, then such a graph is disconnected, as there are certainly Facebook
users that have 0 friends. Note also that the graph pictured in Figure 5 is
disconnected, while that pictured in Figure 8 is connected.

Example 2

Some graphs have the property that every vertex has the same degree. Such
graphs are called regular:

43



last edited March 20, 2016

Definition 16. A graph is called k-regular if the degree of every vertex is k.

Notice that a graph on n vertices can only be k-regular for certain values of
k. First, of course k must be less than n, since the degree of any vertex is at
most n� 1. Furthermore, consider a graph with an odd number of vertices. If
such a graph were k-regular for an odd value of k, then

P
i

deg(v
i

) would be
odd, which is not possible since it is equal to an even number 2|E|. Therefore,
it is not possible to have a k-regular graph on n vertices if both k and v are
odd. Note that a regular graph need not be connected.

Example 3

A special type of regular graph is one in which any two vertices are connected
by an edge.

Definition 17. A complete graph is one such that for any two vertices u, v 2
V , there exists an edge {u, v} 2 E.

A complete graph on n vertices is commonly denoted by K
n

. Note that K
n

is a (n � 1)-regular graph. Also note that a complete graph on n vertices has
n(n� 1)/2 edges. We can see this by considering that the degree of each of the
n vertices is n � 1. Therefore, the sum of degrees of all vertices is n(n � 1),
which according to Theorem 7 is equal to 2|E|. Therefore, the number of edges
is |E| = n(n� 1)/2. Note also that all complete graphs are connected.

Example 4

Another important kind of graph is one in which the set of vertices and edges
can be divided in a very particular way:

Definition 18. A bipartite graph is one whose vertices V can be divided into

two sets A and B such that there are no edges between any two vertices in A or

between any two vertices in B.

Notice that in Figure 9, all edges connect one vertex from group A to one
vertex from group B; there are no edges between pairs of vertices in A or between

A

B

Figure 9: A bipartite graph with six edges on seven vertices.

pairs of vertices in B. One real-life example of a bipartite graph can be seen in
the “Netflix Prize” problem. In 2009 Netflix o↵ered a $1 million dollar prize to
the team that could best predict how much a viewer would enjoy a particular
movie given their movie preferences. One could view this problem as studying a
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graph with two sets of vertices: viewers and movies. Edges are drawn between
individuals who have viewed a particular movie in the past.

In such a graph it does not make sense to draw an edge between two people or
between two movies. Much can be learned about this bipartite graph. We note
that it should be clear that a bipartite graph need not be connected. This was
clear in Figure 9 and is clear in this figure as well.

We might wonder about the largest number of edges in a bipartite graph.
We recall that for a general graph on n vertices, we could have n(n�1)/2 edges.
In the case of a bipartite graph, however, we should expect the number to be
smaller, since there are no edges between vertices of each subset. If we want to
add as many edges as possible, we should draw an edge from every vertex in A
to every vertex in B. We will then have a total of |A||B| edges. One way to
see this is by noticing that the degree of every vertex in A is |B| and the degree
of every vertex in B is |A|. Using the formula

P
deg(v

i

) = 2e = 2|E|, we have
|A||B|+ |B||A| = 2|E|, which of course gives us |E| = |A||B|. If you don’t find
this convincing, experiment a bit using di↵erent sets A and B, and think about
the maximal number of edges you can draw in such a graph.
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