
last edited April 4, 2016

6.4 Di�e-Hellman Key Exchange

We can now use modular arithmetic to devise a secure communication protocol.
We begin by discussing a method by which two people, far away from one
another, can share a password that no one else can know. What is amazing is
that both of them can send information publicly, yet end up with a mutually-
shared password that only these two people know. How can they do that?

To motivate the general approach, consider the following dilemma. Suppose
you and a friend would each like to paint your rooms with the same color. It’s
not important what color that is, but you want to make sure that no one else
in town uses that color. How can you make this happen? If the two of you go
to Lowe’s or Home Depot together, you can choose a color, split the can, and
go home. But suppose that you to live some distance away and won’t have a
chance to see each other. If one of you buys the paint and sends half of it to the
other person, someone else, perhaps the delivery person, might intercept that
color! Even if the person only sends the information about the paint, someone
else might discover your scheme. Is there any way to solve this problem?

Mixing Paints

It turns out that there is such a way, due to a very important “problem” that
arises in mixing paints that some readers have likely encountered. Imagine going
to the store and choosing a color you like, and also a bucket of white paint, which
you use to make the color lighter. You go home and mix some blue paint and
some white until you get the color that you think will look perfect. You begin
painting the room but soon, after painting half of the walls, you realize that
you didn’t mix enough paint, and you’ll need to make more. Now you have a
mega-problem. You don’t remember exactly how much white you added to the
blue, and have no idea how to recreate the exact shade you made initially. Of
course you can guess the proportions, but now there’s a good chance that half
of your walls will be one shade of blue, and the other half of the walls will be
another shade. You’ve painted yourself into a figurative corner.

This problem highlights the following beautiful property of paints – it’s very
easy to mix them, but almost impossible to look at a mixed paint and determine
how it was made. While this can be very frustrating for someone painting, this
issue in fact allows you and your friend to solve your high-security room-painting
needs. You can do the following. Each of you takes a gallon of white paint. Next,
you take a colored paint of your choosing in an amount of your choosing and add
that to the gallon of white paint you bought; you don’t tell anyone how much
you’ve added. Your friend does the same with whatever color they’ve chosen.
Now each of you sends that paint to the other person. The important point to
notice is that anyone that might see the paints in transit has no way of knowing
what other paint you’ve mixed in and in what quantity. Perhaps you’ve added
a quarter gallon of quarter gallon of Fountain blue, or perhaps it was a third of
a gallon of Capri.

Now you have the paint your friend has mixed, and they have the paint that

87



last edited April 4, 2016

you’ve mixed. These paints are di↵erent, but you can now make them the same
quite easily. Each of you adds to the paint in your hands the exact amount
of whatever paint you’ve chosen and added to the other paint. The two paints
are now identical and only the two of you have that color, since anyone in the
middle who has seen the paint in transit has no way of determining what color
and what amount each of you have added.

This beautiful “thought experiment” shows that it is possible for two people
to work together to create information that is known only to them and secret
from everyone else, even though they have shared some information publicly.
This idea motivates the development of the Di�e-Hellman key-exchange proto-
col that is used regularly by computers when information must be sent securely.
Of course computers do not send paints to one another, but through modular
arithmetic they are able to achieve a similar result.

Di�e-Hellman Key Exchange

Alice and Bob would like to communicate securely. The Di�e-Hellman key
exchange protocol allows them to work together to create a password that only
the two of them will know, even while some of the information they exchange
is completely public. To do this, they use numbers instead of paints. More
specifically, they agree (publicly) on a modulus m and an integer g, which is
smaller than m and which serves as their “white paint”. Next, each of Alice and
Bob chooses another secret number which they will share with nobody; we will
use a to refer to Alice’s secret number and b to refer to Bob’s secret number.

Alice then calculates ga (mod m) and Bob calculates gb (mod m). Like with
the paints, it is easy to create these numbers but almost impossible to figure
out how they were made. That is, if you just know g, m, and ga (mod m),
there is no known way of e�ciently determining a. If m is small we can use
trial-and-error to quickly determine a, but in general the value of m might have
hundreds of digits (we’re talking about numbers bigger than a trillion times
a trillion times a trillion many times over). For this reason, Alice can send
the number ga (mod m) to Bob and not worry that anyone will figure out her
secretly chosen number a, even if they know g, m, and ga (mod m). Likewise,
Bob can send over gb (mod m) and not worry that someone will figure out his
secret number b. In this sense, they are sending over their specially-mixed paints
and no one can figure out how they mixed them, even if they know that the
base was white.

At this point Alice still remembers her secret number a and now has a
number gb (mod m) which she received from Bob. Using this, and modular
exponentiation, she can quickly compute (gb)a (mod m) by taking gb (mod m)
to the ath power. Likewise, Bob still has his secret number b and also knows
ga (mod m), which Alice told him, allowing him to compute (ga)b (mod m).
We might remember from high-school algebra that (xa)b = xab = xba = (xb)a;
the same rules hold in modular arithmetic, and so (xa)b ⌘ xab ⌘ xba ⌘ (xb)a

(mod m). Therefore, Alice and Bob now have the same number gab (mod m),
and they are the only two people that know the number. Even though bad guys

88



last edited April 4, 2016

might know g and m, and even ga and gb (mod m), they have no way to figure
out gab (mod m).

If Alice and Bob use g = 3 and modulus m = 19, for example, then if we
can just compute g1, g2, . . . , g18 to determine all possible values of ga (mod m),
and use that list to determine a once we know ga (mod m). As noted above,
however, m is usually chosen to be a number with hundreds and hundreds of
digits, and calculating a list of possible ga (mod m) values for every a < m
would take billions and billions of years, even if we had the most powerful
computers in the world focused on that problem alone. It is thus the practical

impossibility of determining a that makes this protocol secure. We don’t know
whether one day someone will figure a way to determine a; if that happens,
security as we know it will need new tools.

NOTE: In setting up this protocol, it is important to make “good” choices
of g and m. To highlight why some thought is necessary, consider choosing
g = 10 and m = 101. We might notice quickly notice that g1, g2, g3, g4, g5 . . . ⌘
10, 100, 91, 1, 10, . . . (mod 101). In other words, the repeating pattern has pe-
riod 4, and so there are only 4 possible values of gn (mod 101). That means
that Alice and Bob will only be able to send over one of these 4 numbers, making
it extremely easy to crack this code.

Example 1. Alice and Bob agree to use g = 7 and m = 997. Alice chooses
a = 5 and Bob chooses b = 10; they keep these numbers secret, telling no
one else about them. Alice then calculates ga = 75 ⌘ 855 (mod m) and Bob
calculates gb = 710 ⌘ 224 (mod m). Each sends their computed number to the
other, so Alice receives 224 and Bob receives 855. They each then compute gab

(mod 997) by taking their received number and exponentiating it to their secret
number. Alice determines that 2245 ⌘ 455 (mod 997) and Bob determines that
85510 ⌘ 455 (mod 997). Both Alice and Bob now can use the number 455 as a
shared secret password.

Example 2. Alice and Bob agree to use a base g = 37 and modulus
m = 2,305,843,009,213,693,951. Alice chooses a = 537 and Bob chooses b =
3024934, which they use to calculate ga (mod m) ⌘ 957,141,291,894,918,330
and gb (mod m) = 2,210,741,389,954,762,204. Each sends their computed num-
ber to the other, so Alice receives gb (mod m) and Bob receives ga (mod m).
They each then compute gab (mod m) by taking their received number and
exponentiating it to their secret number. Alice determines (gb)a (mod m) =
2,305,843,009,213,693,951 and Bob determines that (ga)b (mod m) is that same
number. Alice and Bob now can use this number gab (mod m) as a shared se-
cret password to communicate securely. If a bad guy wanted to guess the secret
numbers of Alice and Bob, they might need to perform millions of billions of
computations to determine that a = 537 or that b = 3024934.

Of course calculating these numbers is not easy for us to do by hand, but they
are relatively straightforward for a well-programmed computer. This protocol
allows computers to communicate with one another through insecure, public
channels, yet maintain secrecy of the information that is being transmitted. It
is used regularly by millions and billions of electronic device around the world
every single day.

89


