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7 Symmetry and Group Theory

One of the most important and beautiful themes unifying many areas of modern
mathematics is the study of symmetry. Many of us have an intuitive idea of
symmetry, and we often think about certain shapes or patterns as being more or
less symmetric than others. A square is in some sense “more symmetric” than
a rectangle, which in turn is “more symmetric” than an arbitrary four-sided
shape. Can we make these ideas precise? Group theory is the mathematical
study of symmetry, and explores general ways of studying it in many distinct
settings. Group theory ties together many of the diverse topics we have already
explored – including sets, cardinality, number theory, isomorphism, and modu-
lar arithmetic – illustrating the deep unity of contemporary mathematics.

7.1 Shapes and Symmetries

Many people have an intuitive idea of symmetry. The shapes in Figure 38 appear
symmetric, some perhaps more so than others. However, despite our general
intuitions about symmetry, it may not be clcear how to make this statement
precise. Can it make sense to discuss “how much” symmetry a shape has? Is

Figure 38: Some symmetric polygons.

there some way to make precise the idea that the regular pentagon is “more
symmetric” than the equilateral triangle, or that the circle is “more symmetric”
than any regular polygon? In this section we will explore symmetry and the way
in which it arises in various contexts with which we are familiar, especially in
the geometry of regular polygons (2D) and regular polyhedra (3D), such as the
Platonic solids. The study of symmetry is a recurring theme in many disparate
areas of modern mathematics, as well as chemistry, physics, and even economics.

To help us explore the idea of symmetry, we begin by considering a single
concrete example, the equilateral triangle below. What does it mean for this
shape to be symmetric?
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Rotation symmetries

An equilateral triangle can be rotated by 120�, 240�, or 360� angles without
really changing it. If you were to close your eyes, and a friend rotated the
triangle by one of those angles, then after opening your eyes you would not
notice that anything had changed. In contrast, if that friend rotated the triangle
by 31� or 87�, you would notice that the bottom edge of the triangle is no longer
perfectly horizontal.

Many other shapes that are not regular polygons also have rotational sym-
metries. The shapes illustrated in Figure 39, for example, each have rotational
symmetries. The first example can be rotated only 180�, or else 360� or 0�. The

Figure 39: Several shapes with rotational symmetries.

third shape can be rotated any integer multiple of 90�. The fourth shape can be
rotated any integer multiple of 72�. The fifth shape can be rotated any integer
multiple of 60�.

More generally, we say that a shape has rotational symmetry of order n if
it can be rotated by any multiple of 360�/n without changing its appearance. We
can imagine constructing other shapes with rotational symmetries of arbitrary
order. If the only rotations that leaves a shape unchanged are multiples of 360�,
then we say that the shape has only the trivial (order n = 1) symmetry.

Mirror symmetries

Another type of symmetry that we can find in two-dimensional geometric shapes
is mirror symmetry. More specifically, we can draw a line through some shapes
and reflect the shape through this line without changing its appearance. This
is called a mirror symmetry.

Further consideration of the equilateral triangle (cf. Figure 40) shows that
there are actually three distinct mirror lines through which we can reflect the
shape without changing its appearance. If we were to reflect the triangle through
any other line, the shape as a whole would look di↵erent.

Rotational symmetries and mirror symmetries are not exclusive, and the
same shape can have symmetries of both kinds. The equilateral triangle clearly
has both mirror symmetries and rotational symmetries. Likewise, the fourth
shape in Figure 39 has five mirror symmetries, along with many five rotational
ones. The shapes in Figure 41, alternatively, have only mirror symmetries but
no rotational ones.
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Figure 40: A line can be drawn through a triangle to highlight its symmetry.
If the shape is reflected through this line, then we obtain the same equilateral
triangle, unmoved.

Figure 41: Each of these shapes can be reflected through a vertical line; none
of these shapes have any rotational symmetry.

Counting symmetries

One way in which we can quantify the “amount” of symmetry of an object
is by counting its number of symmetries. For example, we might count the
number of rotational symmetries of an object, along with its mirror reflection
symmetries. However, counting the symmetries of a shape can be challenging.
It is not immediately clear which symmetries we should count and which, if
any, we should not count. To understand why we might not count certain
symmetries, consider rotating the equilateral triangle by 120�, 240�, and 360�.
Of course the numbers by which we are rotating the triangle are di↵erent, and
so we might be inclined to count each of them separately. But notice that we
can also rotate the triangle by 480�, 600�, and 720�. Should we count those
as di↵erent symmetries? If we do count them, then what would stop us from
counting an infinite number of rotational symmetries for a triangle, or for that
matter, any shape?

One way to limit the number of symmetries we count involves coloring, or
otherwise labeling, the shape. For example, we can color each edge of the equi-
lateral triangle, as illustrated in Figure 42. Symmetries can then be captured
as changes of colors that leave the uncolored shape fixed. Any triangle in either
row can be obtained from any other triangle in that row through a rotation;
triangles can be obtained from triangles in the other row through reflections.

Using this coloring allows us to count symmetries carefully. If changing
the shape in two di↵erent ways results in the same coloring, then we should
count those two symmetries as the same. For example, rotating the equilateral
triangle by 120� or 480� results in the same coloring, so we count those as the
same symmetry. Likewise, rotating the triangle by 0� and 360� also result in
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Figure 42: Equilateral triangle with edges colored. Any triangle in either row
can be obtained from another triangle in the row through a rotation; triangles
can be obtained from triangles in the other row through reflections.

the same coloring, so we count those the same as well. To reduce confusion, we
use a number between 0 and 360 (not including 360 itself) to describe the angle
of a rotation; thus, we prefer 120� to 480�, despite their equivalence. Likewise,
for reasons that will become more clear in the following section, we discussing
0� rotations, or “doing nothing” to 360� rotations, despite their equivalence.

We are therefore left with six symmetries of the triangle – the rotations
(0�, 120�, and 240�), and three reflections, one for each of the mirror planes
passing through a corner and the center of the triangle. These symmetries can
be pictured by how they transform the colored triangle in Figure 42.

Symmetries of the square

A square is in some sense “more symmetric” than a triangle because it has
more symmetries. Figure 43 below shows a square with colored edges arranged
in di↵erent ways. Again you might notice that any two squares in the same row
can be obtained from one another through rotations, whereas those in distinct
rows can only be obtained from one another through a reflection. Some thought

Figure 43: Squares.

will show that there are no other rotations or mirror symmetries, and so these
figures represent all eight symmetries of the square.

Although this section is concerned primarily with rotational and mirror sym-
metries of single objects in two dimensions, other types of symmetries arise in
infinite systems and in higher dimensions. We do not consider those symmetries
in this section.
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Until now we have considered what symmetries are and briefly discussed how
to count them. To say that a particular shape is “more symmetric” than another
one can be made precise by considering their total number of symmetries. For
example, the three shapes in Figure 44 each have a set of four symmetries.
However, notice that the first two shapes have the same set of 4 rotational
symmetries (0�, 90�, 180�, and 270�), but no mirror symmetries. In contrast,
the third shape has 2 rotational symmetries and 2 mirror symmetries. How

Figure 44: Three shapes, each with 4 symmetries. The first two have 4 rotational
symmetries (0�, 90�, 180�, and 270�) and no mirror symmetries. The third has
2 rotational symmetries (0� and 180�), and two mirror symmetries.

can we distinguish between the first and second shapes, on the one hand, and
the third shape, on the other? The mathematical development of group theory
provides rigorous tools to describe symmetries of shapes. Before consider the
actual definition of a group, we first consider a more general topic of binary
operators.
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