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7.3 Groups

The study of symmetry has undergone tremendous change in the late 19th
and early 20th centuries with the development of group theory, a part of an
area called algebra (people who study algebra are called algebraists). Algebra
and group theory has found applications in geometry, graph theory, physics,
chemistry, architecture, crystallography, and countless other areas of modern
science. There is hardly a discipline in which the study of symmetry, often with
tools provided by group theory, has not played an important role.

In the previous two sections we have discussed shapes and their symmetries,
and binary operators and several of their properties. The theory of groups
will provide the link between these two topics, which might appear otherwise
unrelated.

Remember that in Section 7.2 we considered several properties that a binary
operator could have when acting on a given set. For example, closure describes
the property of being able to combine two elements in a set to obtain another
element also in the same set. We also considered identity elements and inverses,
as well as the associative property. An important point that we made then is
that not every set and binary operator possesses all of these properties. We saw
some sets that were closed under an operator, for example, but which do not
possess inverses, and other sets in which we could find an identity element, but
for which not all elements have inverses.

A group is merely a choice of set S and binary operator ? that satisfies four
conditions.

Definition 32. A group is a set G and operator ? such that:

• (closure) G is closed under ?; i.e., if a, b 2 G, then a ? b 2 G.

• (identity) There exists an identity element e 2 G; i.e., for all a 2 G we

have a ? e = e ? a = a.

• (inverses) Every element a 2 G has an inverse in G; i.e., for all a 2 G,

there exists an element a0 2 G such that a ? a0 = a0 ? a = e.

• (associativity) The operator ? acts associatively; i.e., for all a, b, c 2 G,

a ? (b ? c) = (a ? b) ? c.

Although this definition sounds complicated, and perhaps even arbitrary, it
turns out that many of the examples we have already considered are in fact
groups; for the sake of time and focus we will generally not spend much time
discussing the associative property.

Let us consider several examples. Most important for our connections to
symmetries, it turns out that the set of symmetries of any geometric shape
constitute a group when the binary operator is defined by defining a ? b as “do
a and then do b”. (We briefly note, for the sake of completeness, that our
conventions are in contrast to mathematical convention. In particular, most
mathematicians would interpret a ? b to mean first do b and then do a.)
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Example 1. Let us consider the set S = {0, 1, 2, 3} under addition mod 4.
It is straightforward to see that this choice of set and binary operator constitute
a group. (1) The set is closed under addition mod 4, as for any pair of numbers
a, b 2 S, their sum mod 4 is also an element of S. (2) The element/number 0 here
is an identity element, since for any element a 2 S, we have a+ 0 = 0 + a = a.
(3) Confirming inverses is slightly less straightforward, but it is not di�cult to
confirm. The inverse of 0 is 0 (itself), since 0 + 0 ⌘ 0 (mod 4); the inverse of 1
is 3, the inverse of 2 is 2, and the inverse of 3 is 1, and combining any of these
elements with its inverse (through addition mod 4) gives us the identity element
0. (4) Finally, modular addition is associative.

We can generalize this example to {0, 1, . . . ,m� 1} and addition modulo m,
where m is a natural number. It is straightforward to see that addition modulo
m is closed on this set, and that 0 can serve as the identity element, for any
choice of m. The inverse of any element a this set is m � a (mod m). For
example, in mod 17, the inverse of 5 is 17 � 5 = 12, which when added to 5 is
congruent to 0 mod 17. Finally, as noted before, modular arithmetic is always
associative.

Example 2. The set of all integers Z under addition is an example of a
group, albeit one with an infinite number of elements in it. This choice of set
and binary operator satisfies all four conditions to constitute a set.

Example 3. The same set of set might not be a group under a di↵erent
operator. For example, the integers do not constitute a group under multiplica-
tion. Although 1 is good choice of identity element, almost no elements have an
inverse. For example, the integer a = 5 has no “inverse” a0 so that a⇥ a0 = 1.

Example 4. Likewise, the same operator might not be a group if the set
is changed. For example, even though Z constitutes a group under addition,
the set of natural numbers N does not. Since every element is positive, there is
certainly no identity element e such that a+ e = e+ a = a for all a 2 N. Even
if we add the number 0 to N, i.e., even the the set N [ {0}, does not constitute
a group since although it has an identity element, it does not have inverses for
almost any of its elements.

Example 5. The set of positive rational numbers, which we call Q+ con-
stitutes a group under multiplication. Multiplying any two positive rational
numbers gives us another positive rational number. The number 1, which is of
course a rational number, serves as the identity element, and for any element
a/b 2 Q+, the rational number b/a is its (multiplicative) inverse, since a

b

b

a

= 1.
Example 6. Groups do not need to be large or complicated. For example,

consider the set {0} under addition. It seems quite boring, but if you think
about its properties will notice that it constitutes a group.

Example 7. Although the set {0, 1, 2, . . . ,m�1} under addition modulo m
constitutes a group, it does not under multiplication. To see this, consider that
the number 1 is the identity element of such a group. Notice also that there is
no element a 2 {0, 1, 2, . . . ,m� 1} so that a⇥ 0 = 0⇥ a = 1, so at least 0 does
not have an inverse.

Example 8. Removing 0 from the set can sometimes help make {0, 1, 2,
. . . ,m�1} into a group under multiplication modulo m. Consider, for example,
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the set {1, 2, 3, 4} under multiplication mod 5. The number 1 can serve as an
identity element, and notice that every element has an inverse (can you see
what they are?). Multiplication mod m is always associative, so this constitutes
a group.

Example 9. However, removing 0 from the set does not always help. Con-
sider, for example, the set {1, 2, 3, 4, 5} under multiplication mod 6. The number
1 can serve as an identity element, but notice that not every element has an
inverse. Indeed, most elements do not have an inverse. In particular notice
that 2, 3, and 4, each of which shares factors in common with 6, do not have
multiplicative inverses, while 1 and 5 do.

Group order

Occasionally we will want to have some way of measuring the “size” of a group.
We use the word order to denote the number of elements in the associated set.

Definition 33. The order of a group given by a set G and binary operator ?
is the number of elements in G, i.e., the order of G, sometimes written as |G|.

We have seen several examples of finite groups, including sets {0, 1, 2, . . . ,m�
1} under addition modulo m. The order of such a group is m. A group that
has only one element in it, such as {0} under addition, is called a trivial group.

Groups of symmetries

The ultimate goal of this section was to see that symmetries of shapes can be
studied carefully, using the tools of group theory. It turns out that many sets
of symmetries constitute a group when the binary operator is defined as a ? b =
“do a and then do b”. Let us look at several examples.

Example 1. Let us reconsider the set of all rotations of the equilateral
triangle: S = {rotate 0�, rotate 120�, rotate 240�}. This is not the set of all
symmetries, but it is a set of all rotational symmetries. Notice that we can
combine any two of these symmetries to form a symmetry in this set. Notice
also that rotating by 0� serves as the identity element, and that each of the
rotations have an inverse. Finally, rotations in space are always associative.
Using the definition of order, we can say that the order of the group of rotational
symmetries of the equilateral triangle is 3. More generally, if we consider all n
rotations of a regular polygon with n sides, then we get a group of order n.

Example 2. The set of all symmetries of a square also constitute a group
under the operator of doing one symmetry and then doing another one. You
might recall that the square has 8 di↵erent symmetries, four rotational ones and
four mirror reflections. It might take some thinking to realize that combining
any two of these symmetries will give us another symmetry in the group. It is
also straightforward to see that the “do-nothing” rotation is an identity element,
and also that that every symmetry can be reversed. Rotations are reversed by
other rotations, and mirror symmetries are always reverse themselves – if you
take a reflection of a reflection (through the same mirror), then you always come
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back to the shape from which you began. More generally, if we consider all n
rotations and all n reflections of a regular polygon with n sides, then we get a
group with order 2n.

Example 3. We can’t always combine arbitrary symmetries to form a group.
Consider for example the set of all mirror symmetries of an equilateral triangle,
or of a square. You will notice that combining any two mirror symmetries will
give us a symmetry not in the group. In fact, combining two mirrors will always
give us a rotation. If you don’t understand or believe me, take a square and
label its four edges. Next, “reflect” it through one of the four mirror lines going
through its center, and then reflect it again through another mirror line. You
will see that the result is indeed a rotation. If you use the same mirror, then
the result will be the same as the 0� rotation.

Example 4. The Platonic solids introduce symmetry groups that are sub-
stantially more complicated. In class we only considered rotational symmetries
of these polyhedra, and we will not be concerned with the full group of symme-
tries. Let us begin by considering the cube. We can rotate the cube about axes

Figure 46: The five regular polyhedra, also known as the Platonic solids. Below
is listed the number of vertices v, edges e, and faces f of each regular polyhedron,
as well as the number of edges per face n and degree d of each vertex.

that pass through two opposite face centers. Each of these axes support four
distinct rotations, by 0�, 90�, 180�, or 270�. There are two di↵erent kinds of
axes that also allow for rotations. In particular, we can also draw a line through
opposite pairs of corners, allowing us to rotate the cube about them by 0�, 120�,
or 240�. Finally, we can draw lines passing through centers of opposite edges.
We can rotate the cube about these lines/axes either 0� or 180�.

Commutative and non-commutative groups

One important idea that is not obvious at all is that the order of operations
can matter, not always but often. To highlight the importance of this point,
consider multiplication on the real numbers. For every pair of real numbers
x, y 2 R it is always the case that x⇥ y = y ⇥ x. The same is true for addition
and many other groups we have considered.

However, in many groups, the order in which we combine the elements mat-
ters. To see one such example, consider an equilateral triangle and its rotations.
We have seen before that the set of symmetries of an equilateral triangle con-
tain three rotations (including the one by 0�) and three mirrors. Does the order
of applying these symmetries matter? Sometimes it does not. For example,
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consider the rotation by 120� and the rotation by 240�. The order in which we
apply these symmetries does not matter.

However, consider the 120� rotation and a reflection through a vertical mir-
ror. Figure 47 shows the intermediate and final results of performing these

Figure 47: Equilateral triangle changed with a 120� rotation and with a re-
flection through a vertical mirror; the order in which these two operations are
performed matters.

operations in two di↵erent orders. It is clear that here order matters.
Groups in which the order does not matter, such as the integers, rationals,

real numbers under addition or multiplication, the order does not matter, and
a + b = b + a and a ⇥ b = b ⇥ a for any two elements. Such groups are called
commutative, or Abelian, in honor of Niels Abel, a founding father of group
theory. If we consider the set of rotational symmetries about a single axis of
rotation, such as all rotations of a triangle, then that set will form a group which
is commutative.

A more complete exploration of groups, even those associated with the Pla-
tonic solids, is beyond the scope of these notes. Additional information about
this material can be found in the homework assignments and the posted solu-
tions.
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