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7.4 Symmetry Groups of Shapes

One of the primary applications of group theory is the study of symmetries
of shapes of di↵erent kinds. Symmetries of shapes form groups, and this sec-
tion will explore many such examples, including those associated with regular
polygons and polyhedra.

Cyclic Groups

Consider the set of rotations of an equilateral triangle that we considered before.
We have the set:

S = { rotate 0�, rotate 120�, rotate 240� }, (85)

which as we have seen before forms a group under the binary operation defined
by performing one rotation and then another. For reasons that will become
clear soon, from now onwards we will call this group C3. Likewise, C4 will be
the group:

C4 = { rotate 0�, rotate 90�, rotate 180�, rotate 270� }. (86)

One thing we might notice about these two groups is that all elements of the
group can be obtained by taking one element of the set, and combining it dif-
ferent numbers of times. For example, let us use r to denote the rotation by
90�. We can then rewrite C4 as:

C4 = { r0, r1, r2, r3 }, (87)

where powers of r indicate performing the same geometric operation (in this
case rotations by 90�) multiple times. If we s to denote a rotation by 120�, then
we can likewise describe C3 as the set {s0, s1, s2}.

Both of these examples illustrate the possibility of “generating” certain
groups by using a single element of the group, and combining it di↵erent num-
bers of times. We have a special name for such groups:

Definition 34. A cyclic group is a group that can be “generated” by combining

a single element of the group multiple times. A cyclic group with n elements is

commonly named C
n

.

Figure 48 illustrates several shapes with symmetry groups that are cyclic.

Figure 48: Shapes with associated symmetry groups C2, C4, and C6.

112



last edited April 22, 2016

The examples above might lead us to wonder whether all symmetry group
can in fact be generated by repeatedly combining a single element. Is every
symmetry group in fact cyclic? Simple consideration will show us that this is
not the case.

Dihedral Groups

Let us reconsider, for example, the set of all symmetries of a square. In addition
to four rotational symmetries (0�, 90�, 180�, 270�), the square also has four mir-
ror reflection symmetries; the e↵ects of applying these symmetries to a colored
square can be seen in Figure 50. If the first square is identified with the identity

Figure 49: A single colored square transformed by rotations and mirror reflec-
tions; the set of all n rotation symmetries and n mirror reflection symmetries of
a regular polygon with n sides make up the symmetry group of that polygon.

element (0� rotation), then squares in the first row illustrate rotations, and all
squares in the second row illustrate mirror reflections. It turns out that this set
of rotations and reflections satisfy all criteria to form a group.

Knowing that the symmetries of a square constitute a group, we might won-
der whether this group is cyclic. In other words, can all of these symmetries be
obtained by combining a single element multiple times? In short, the answer is
no. To help understand why this is, consider that repeating a mirror reflection
returns a shape to its original position; i.e., every mirror reflection is its own
inverse. Therefore, a single mirror reflection cannot possible generate any ele-
ments aside from the identity and itself. Likewise, a single rotation combined
with itself many times could never produce a mirror reflection. To see why, no-
tice that all elements in the top row of Figure 50 have the same “orientation”.
Specifically, red, yellow, green, blue all appear in the same order (clockwise).
Rotations never change the orientation of a shape. In the bottom row, the four
colors appear in a reversed order, which happens under any mirror reflection
symmetry. In short, the symmetry group of a square is not cyclic.

Definition 35. A dihedral group is a group that can be “generated” by com-

bining a rotation symmetry and a mirror reflection multiple times. A dihedral

group with n rotational and n mirror symmetries is commonly named D
n

.
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Dihedral groups are often associated with regular polygons. In particular,
the set of symmetries of every regular polygon with n sides forms the dihedral
group D

n

. Since this group contains n rotations and n reflection symmetries,
the order of D

n

is always 2n.

Symmetry Groups of the Platonic Solids

The Platonic solids have symmetry groups that are even more complicated than
either the cyclic or dihedral groups. One way to understand this is through
consideration of their rotational symmetries. Until now all symmetry groups
associated with shapes have a single axis of rotation. In both the cyclic and
dihedral group, all rotational symmetries can be obtained by repeating a single
rotation multiple times. This is not the case, however, for three-dimensional
shapes including the Platonic solids.

[Notes here are incomplete.] However, we briefly consider one example. The
cube has three di↵erent kinds of rotational symmetries.

Figure 50: A cube and three di↵erent kinds of rotational symmetry axes.

1. We can draw lines through centers of opposite faces, and rotate the cube
by multiples of 90� about these; there are three such pairs of faces, and
hence three such axes of rotation.

2. We can also draw lines through opposite corners, and rotate the cube by
multiples of 120� about these lines; there are four pairs of corners, and
hence four such axes of rotation.

3. We can also draw lines through centers of opposite edges, and rotate the
cube by multiples of 180� about these lines; there are six pairs of edges,
and hence six such axes of rotation.

By themselves, these symmetries do not form a group, since in general combin-
ing these symmetries produce another symmetry not in this list. However, by
combining these symmetries we can form a group. If we ignore any symmetries,
the set of symmetries of a cube has 24 elements; if we include mirror reflections,
the group of symmetries has 48 elements. [Notes here are incomplete.]
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