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With the arrival of the quadrennial 
soccer World Cup this summer, 

more than a billion people around the 
world are finding their television and 
computer screens filled with depictions 
of soccer balls. In Germany, where the 
World Cup matches are being played, 
soccer balls are turning up on all kinds 
of merchandise, much of it having noth-
ing to do with soccer.

Although a soccer ball can be put to-
gether in many different ways, there is 
one design so ubiquitous that it has be-
come iconic. This standard soccer ball is 
stitched or glued together from 32 poly-
gons, 12 of them five-sided and 20 six-
sided, arranged in such a way that every 
pentagon is surrounded by hexagons. 
Postmodern paint jobs notwithstanding, 
the traditional way to color such a ball 
is to paint the pentagons black and the 
hexagons white. This color scheme was 
reportedly introduced for the World 
Cup in 1970 to enhance the visibility 
of the ball on television, although the 
design itself is older.

Most people associate the soccer-ball 
image with hours spent on the field or 
the sidelines, or perhaps just with ad-
vertisements for sport merchandise. But 
to a mathematician, a soccer ball is an 
intriguing puzzle. Why does it look the 
way it does? Are there other ways of 
putting it together? Could the penta-

gons and hexagons be arranged differ-
ently? Could other polygons be used 
instead of pentagons and hexagons? 
These questions can be tackled using the 
language of mathematics—in particular 
geometry, group theory, topology and 
graph theory. Each of these subjects pro-
vides concepts and a natural context for 
phrasing questions such as those about 
the design of soccer balls, and some-
times for answering them as well.

An important aspect of the application 
of mathematics is that different ways of 
making mathematical sense of everyday 
questions lead to different answers. This 
may come as a bit of a surprise to read-
ers who are used to schoolbook prob-
lems that have only one right answer. 
Properly framing questions is just as im-
portant a part of the art of mathematics 
as answering them. Moreover, a genuine 
mathematical exploration of an open-
ended question does not stop with find-
ing “the answer” (if there is one), but 
involves understanding why the answer 
is what it is, and how it changes when 
the underlying assumptions are modi-
fied. The questions posed by the design 
of soccer balls provide a wonderful il-
lustration of this process.

Soccer Balls and Fullerenes
Mathematicians like to begin by defining 
their terms. What, then, is a soccer ball? 
An official soccer ball, to be approved by 
the Fédération Internationale de Foot-
ball Association (FIFA), must be a sphere 
with a circumference between 68 and 70 
centimeters, with at most a 1.5 percent 
deviation from sphericity when inflated 
to a pressure of 0.8 atmospheres.

Alas, such a definition says nothing 
about how the ball is put together, and 
is therefore not suitable for a mathemat-
ical exploration of the design. A better 
definition is that a soccer ball is approxi-

mately a sphere made of polygons, or 
what mathematicians call a spherical 
polyhedron. The places where the poly-
gons come together—the vertices and 
edges of the polyhedron—trace out a 
map on the sphere, which is called a 
graph. (Such a graph has nothing to do 
with graphs of functions. The word has 
two completely different mathematical 
meanings.) Examined from the perspec-
tive of graph theory, the standard soccer 
ball has three important properties:

(1) it is a polyhedron that consists 
only of pentagons and hexagons;

(2) the sides of each pentagon meet 
only hexagons; and

(3) the sides of each hexagon alter-
nately meet pentagons and hexagons.

As a starting point, then, we can define 
a soccer ball to be any spherical poly-
hedron with properties (1), (2) and (3). 
If the pentagons are painted black and 
the hexagons are painted white, then 
the definition does capture the iconic 
image, though it does not determine 
it uniquely.

This definition places the problem 
of soccer ball design into the context of 
graph theory and topology. Topology, 
often described as “rubber-sheet ge-
ometry,” is the branch of mathematics 
that studies properties of objects that 
are unchanged by continuous defor-
mations, such as the inflation of a soc-
cer ball. For the purposes of topology, 
it doesn’t matter how long the edges of 
a polyhedron are, or whether we are 
dealing with a round polyhedron or 
one with flat sides.

I first encountered the above defini-
tion in 1983, in a problem posed in the 
Bundeswettbewerb Mathematik, a Ger-
man mathematics competition for high 
school students. The problem was: Given 
properties (1)–(3), determine how many 
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pentagons and hexagons a soccer ball is 
made of. Thinking about this problem 
at the time, I assumed that the ball is a 
convex polyhedron in space made up 
of regular polygons. This geometric as-
sumption, together with rules (1), (2) and 
(3), implies that there are 12 pentagons 
and 20 hexagons. Moreover, there is a 
unique way of putting them together, 
giving rise to the iconic standard soccer 
ball. Without the geometric assumption, 
the graph-theory problem has infinitely 
many other solutions, which have larger 
numbers of pentagons and hexagons.

I began thinking about this problem 
again after I was invited to give a lec-
ture at a prize ceremony for the same 
competition in 2001. Eventually, one of 
my postdoctoral fellows, Volker Braun-
gardt, and I found a way to characterize 
all the solutions, a characterization that I 
will describe below.

Interestingly, a related problem arose 
in chemistry in the 1980s after the 60-
atom carbon molecule, called the buck-
minsterfullerene or “buckyball,” was 

discovered. The spatial shape of this C60 

molecule is identical to the standard soc-
cer-ball polyhedron consisting of 12 pen-
tagons and 20 hexagons, with the 60 car-
bon atoms placed at the vertices and the 
edges corresponding to chemical bonds. 
The discovery of the buckyball, which 
was honored by the 1996 Nobel Prize for 
chemistry, created enormous interest in 
a class of carbon molecules called fuller-
enes, which satisfy assumption (1) above 
together with a further condition:

(3′) precisely three edges meet at 
every vertex.

This property is forced by the chemi-
cal bonding properties of carbon. In 
addition, assumption (2) is sometimes 
imposed to define a restricted class of 
fullerenes. Having disjoint pentagons 
is expected to be related to the chemi-
cal stability of fullerenes. There are infi-
nitely many fullerene polyhedra—C60 

was merely the first one discovered as an 
actual molecule—and it is quite remark-
able that the two infinite families of poly-

hedra, the soccer balls and the fullerenes, 
have only the standard soccer ball in 
common. Thus (1)–(3) together with (3′) 
give a unique description of the standard 
soccer ball without imposing geometric 
assumptions. (Assumptions like regular-
ity in fact imply condition (3′).)

To see that this is so requires a brief 
excursion into properties of polyhedra, 
starting with a beautiful formula dis-
covered by the Swiss mathematician Le-
onhard Euler in the 18th century. Euler’s 
formula (see “Euler’s formula,“ next page), 
a basic tool in graph theory and topol-
ogy, says that in any spherical polyhe-
dron, the number of vertices, v, minus 
the number of edges, e, plus the number 
of faces, f, equals 2:

v – e + f = 2

Let’s apply Euler’s formula to a poly-
hedron consisting of b black pentagons 
and w white hexagons. The total num-
ber f of faces is b + w. In all, the penta-
gons have 5b edges, because there are 5 
edges per pentagon and b pentagons in 

Figure 1. Twelve pentagons and 20 hexagons form a figure known to mathematicians as a truncated icosahedron, to chemists as the buckmin-
sterfullerene molecule—and to nearly everybody else as the standard soccer ball. As this summer’s World Cup competition approached, a soc-
cer ball–shaped information pavilion toured the German cities preparing to host World Cup matches. Here the “football globe” makes a stop 
in Leipzig. The iconic black and white soccer ball is also an intriguing puzzle amenable to mathematical analysis. Other soccer balls that may 
never be seen on the playing field also offer interesting solutions to the mathematical questions posed by the standard design.

Sabrina Sarnitz/GmbH
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all. Similarly, the hexagons have a total 
of 6w edges. Adding these two numbers 
should give the total number of edges—
except that I have counted each edge 
twice because each edge lies in two dif-
ferent faces. To compensate I divide by 
2, and hence the number of edges is:

e = (1/2 )(5b + 6w)

Finally, to count the number of verti-
ces, I note that the pentagons have 5b 
vertices in all and the hexagons have 
6w vertices. In the case of a fullerene, 
assumption (3′) says that each vertex 
belongs to three different faces. Thus if 
I compute 5b + 6w, I have counted each 
vertex exactly three times, and hence I 
must divide by 3 to compensate:

v = (1/3)(5b + 6w)

Substituting these values for f, e 
and v into Euler’s formula, I find that 
the terms involving w cancel out, and 
the formula reduces to b = 12. Every 
fullerene, therefore, contains exactly 
12 pentagons! However, there is no 
a priori limit to the number of hexa-
gons, w, and therefore no limit on the 
number of vertices. (This is implicit 
in the title of a 1997 article on fuller-
enes in American Scientist: “Fullerene 
Nanotubes: C1,000,000 and Beyond.”) 
If I impose the additional condition 
(2), then I can show that the number 
of hexagons has to be at least 20. The 
standard soccer ball or buckyball real-

izes this minimum value, for which 
the number v of vertices equals 60, cor-
responding to the 60 atoms in the C60 

molecule. However, it can be shown 
that there are indeed infinitely many 
other mathematical possibilities for 
fullerene-shaped polyhedra. Which of 
these correspond to actual molecules is 
a subject of research in chemistry.

For soccer balls, we are allowed to 
use only assumptions (1)–(3), but not 
(3′), the carbon chemist’s requirement 
that three edges meet at every vertex. 
In this case the number of faces meet-
ing at a vertex is not fixed, but this 
number is at least 3. Therefore, the 
equation v = (1/3)(5b + 6w) becomes 
an inequality: v ≤ (1/3)(5b + 6w). Substi-

Figure 2. Soccer-ball design over the years has been driven by the demand for a round ball that holds its shape and by the technology available. Eight 
panels of vulcanized rubber were glued together to create the ball at left, used in the earliest soccer championship in the United States in 1863. The 
leather ball at center, used in the 1950 World Cup, has a design typical of its era. The small number of large, irregularly shaped flat pieces adversely 
affected its roundness. Thanks to improvements in materials and manufacturing, curved pieces in more complicated shapes can now be used. This 
year’s World Cup ball (right) is made from 14 synthetic-leather panels cut in intricately curved shapes. In graph-theory terms, this ball is a truncated 
octahedron. (Historic photographs courtesy of Jack Huckel, National Soccer Hall of Fame; right photograph courtesy of firosportfoto.de.)

Any non-empty connected finite graph on the sphere satis-
fies Euler’s formula v – e + f = 2. Here v and e are the num-
bers of vertices and edges, and f is the number of regions 
into which the sphere is divided. A proof of Euler’s formula 
proceeds by repeatedly simplifying the graph by the fol-
lowing two operations: 

The first operation consists of deleting any vertex that 
meets only one edge, and in addition deleting the edge 
that meets it (a). This operation does not change the 
number of regions, while it decreases both v and e by 1. 
The second operation consists of collapsing a region to 
a single vertex, together with all the edges and vertices 
on its boundary (b). If the collapsed region had k vertices 
on its boundary, then this collapsing reduces v by k–1, 
reduces e by k and reduces f by 1. Thus v – e + f is not 
changed by either of the two operations. 

A finite iteration of these two simplifications reduces 
any graph to a graph with only one vertex and no edges. 
Then there is one region, and v – e + f = 1 – 0 + 1 = 2 . 

Euler’s formula

a

v
e
f

v – 1
e – 1

f

b

v
e
f

v – 3
e – 4
f – 1
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tuting into Euler’s formula, the terms 
involving w again cancel out, leaving 
the inequality b ≥ 12. Thus every soc-
cer ball contains at least 12 pentagons, 
but, unlike a fullerene, may well con-
tain more.

Also unlike fullerenes, soccer balls 
have a precise relation between the 
number of pentagons and the number of 
hexagons. Counting the number of edg-
es along which pentagons and hexagons 
meet, condition (2) says that all edges of 
pentagons are also edges of hexagons, 
and condition (3) says that exactly half 
of the edges of hexagons are also edges 
of pentagons. Hence (1/2)(6w) = 5b, or 
3w = 5b. Because b ≥ 12, w is at least 20. 
These minimal values are realized by 
the standard soccer ball, and the realiza-
tion is combinatorially unique because 
of conditions (2) and (3). But there are 
also infinitely many other numerical so-
lutions, and the problem arises whether 
these non-minimal numerical solutions 
correspond to soccer-ball polyhedra. 
It turns out that they do, as we’ll see 
shortly, so that there is indeed an infinite 
collection of soccer balls.

Thus we see that there are infinitely 
many fullerenes (satisfying assumptions 
(1), (2) and (3′)) and infinitely many soc-
cer balls (satisfying (1), (2) and (3)). 
However, if we combine the two defini-
tions, there is only one possibility! For 
a fullerene, b = 12, and for a soccer ball, 
5b = 3w. Consequently, for a soccer ball 
to also be a fullerene, we must conclude 
that 5 × 12 = 3w, or w = 20. Any soccer 
ball that is also a fullerene must therefore 
have 12 pentagons and 20 hexagons. It is 
known that there are 1,812 distinct fuller-
enes with 12 pentagons and 20 hexagons, 
but 1,811 of them have adjacent penta-
gons somewhere and are therefore not 

soccer balls, because they violate condi-
tion (2). The standard soccer ball is the 
only one with no adjacent pentagons.

New Soccer Balls from Old
Leaving behind chemistry and fullerene 
graphs, let us now consider the crucial 
question: What other, nonstandard, soc-
cer balls are there, with more than three 
faces meeting at some vertex, and how 
can we understand them? It turns out 
that we can generate infinite sequences 
of different soccer balls by a topological 
construction called a branched covering. 
You can visualize this by imagining the 
standard soccer-ball pattern superim-
posed on the surface of the Earth and 
aligned so that there is one vertex at the 
North Pole and one vertex at the South 
Pole. Now distort the pattern so that one 
of the zigzag paths along edges from 
pole to pole straightens out and lies on a 
meridian, say the prime meridian of zero 
geographical longitude (see Figure 4b). It 
is all right to distort the graph, because 
we are doing “rubber-sheet geometry.”

Next, imagine slicing the Earth open 
along the prime meridian. Shrink the 
sliced-open coat of the Earth in the east-
west direction, holding the poles fixed, 
until the coat covers exactly half the 
sphere, say the Western Hemisphere. Fi-
nally, take a copy of this shrunken coat 
and rotate it around the north-south 
axis until it covers the Eastern Hemi-
sphere. Remarkably, the two pieces can 
be sewn together, giving the sphere a 
new structure of a soccer ball with twice 
as many pentagons and hexagons as 
before. The reason is that at each of the 
two seams running between the North 
and South Poles, the two sides of the 
seam are indistinguishable from the two 
sides of the cut we made in our original 

soccer ball. Therefore, the two pieces fit 
together perfectly, in such a way that 
the adjacency conditions (2) and (3) are 
preserved. (See Figure 4 for step-by-step 
illustrations of this construction.)

The new soccer ball constructed in 
this way is called a two-fold branched cov-
ering of the original one, and the poles 
are called branch points. The new ball 
looks the same as the old one (from the 
topological or rubber-sheet geometry 
point of view), except at the branch 
points. There are now six faces (instead 
of three) meeting at those two vertices, 
and there are 116 other vertices (the 58 
vertices that weren’t pinned at the poles, 
plus their duplicates), with three faces 
meeting at each of them.

There is a straightforward modifica-
tion we can make to this construction. 
Instead of taking two-fold coverings, 

Figure 3. Fullerenes are large carbon mol-
ecules whose shapes are made up of penta-
gons and hexagons that meet three at a time, 
in such a way that no two pentagons are 
adjacent. Every fullerene contains exactly 
12 pentagons, but there is no limit to the 
number of hexagons. The simplest fuller-
ene molecule, C60, has the iconic soccer-ball 
shape. Other fullerenes, such as C80, have 
been made in the laboratory. Mathematically, 
the combinatorics of fullerenes is an applica-
tion of Euler’s formula. 

C60

C80

Figure 4. New soccer balls can be made from existing ones by a mathematical con-
struction called a branched covering. First one chooses a seam of the old soccer ball 
along the edges of polygons (a). This seam is straightened out and sliced open (b, 
c). The whole surface of the soccer ball is shrunk to cover only a hemisphere (d). A 
second copy of this hemisphere is rotated around and stitched to the first (e, f). This 
builds a new soccer ball, which can be deformed as in g. Conforming to the definition 
of a soccer ball, black faces in the new ball are adjacent to only white faces (faces that 
meet only at vertices are not considered adjacent), and white faces have an alternating 
sequence of white and black faces around their edges. (Soccer-ball images in Figures 
4, 5, 6, 9 and 11 were calculated and created by Michael Trott using Mathematica.)

a b c d e

f
g

g
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we can take d-fold branched coverings 
for any positive integer d. Instead of 
shrinking the sphere halfway, we imag-
ine an orange, made up of d orange sec-
tions, and for each section we shrink a 
copy of the coat of the sphere so that 
it fits precisely over the section. Once 
again the different pieces fit together 
along the seams (see Figure 5). For all of 
this it is important that we think of soc-
cer balls as combinatorial or topologi-
cal—not geometric—objects, so that the 
polygons can be distorted arbitrarily.

At this point you might think that 
there could be many more examples of 
soccer balls, perhaps generated from the 
standard one by other modifications, or 

perhaps sporadic examples having no 
apparent connection to the standard soc-
cer ball. But this is not the case! Braun-
gardt and I proved that every soccer ball 
is in fact a suitable branched covering of 
the standard one (possibly with slightly 
more complicated branching than was 
discussed above).

The proof involved an interesting in-
terplay between the local structure of 
soccer balls around each vertex and the 
global structure of branched coverings. 
Consider any vertex of any soccer ball 
(see Figure 6). For every face meeting this 
vertex, there are two consecutive edges 
that meet there. Because at least one of 
those two edges bounds a pentagon, by 
condition (3), there is no vertex where 
only hexagons meet. Thus at every ver-
tex there is a pentagon. Its sides meet 
hexagons, and the sides of the hexagons 
alternately meet pentagons and hexa-
gons. This condition can be met only if 
the faces are ordered around the ver-
tex in the sequence black, white, white, 
black, white, white, etc. (Remember that 
the pentagons are black.) In order for the 
pattern to close up around the vertex, the 
number of faces that meet at this vertex 
must be a multiple of 3. This means that 
locally, around any vertex, the structure 
looks just like that of a branched cover-
ing of the standard soccer ball around a 
branch point. Covering space theory—
the part of topology that investigates re-
lations between spaces that look locally 
alike—then enabled us to prove that any 
soccer ball is in fact a branched covering 
of the standard one.

Beyond Pentagons and Hexagons
To mathematicians, generalization is 
second nature. Even after something 
has been proved, it may not be appar-
ent exactly why it is true. Testing the 
argument in slightly different situations 
while probing generalizations is an im-
portant part of really understanding it, 
and seeing which of the assumptions 
used are essential, and which can be 
dispensed with.

A quick look at the arguments above 
reveals that there is very little in the 
analysis of soccer balls that depends on 
their being made from pentagons and 
hexagons. So it is natural to define “gen-
eralized soccer balls” allowing other 
kinds of polygons. Imagining that we 
again color the faces black and white, 
we assume that the black faces have k 
edges, and the white faces have l edges 
each. For conventional soccer balls, k 
equals 5, and l equals 6. As before, the 

edges of black faces are required to meet 
only edges of white faces, and the edges 
of the white faces alternately meet edges 
of black and white faces. The alternation 
of colors forces l to be an even number.

Going one step further in this process 
of generalization, we can require that 
every nth edge of a white face meets a 
black face, and all its other edges meet 
white faces. This forces l to be a mul-
tiple of n; that is, l = m × n for some 
integer m. Of course we still require that 
the edges of black faces meet only white 
faces. Let us call such a polyhedron a 
generalized soccer ball. Thus the pattern 
of a generalized soccer ball is described 
by the three integers (k, m, n), where k is 
the number of sides in a black face, l = 
m × n is the number of sides in a white 
face, and every nth side of a white face 
meets a black face. The first question 
we must ask is: Which combinations 
of k, m and n are actually possible for a 
generalized soccer ball? It turns out that 
the answer to this question is closely 
related to the regular polyhedra.

Regular Polyhedra
Ancient Greek mathematicians and phi-
losophers were fascinated by the regular 
polyhedra, also known as Platonic sol-
ids, attributing to them many mystical 
properties. The Platonic solids are poly-
hedra with the greatest possible degree 
of symmetry: All their faces are equilat-
eral polygons with the same number 
of sides, and the same number of faces 
meet at every vertex. Euclid proved in 
his Elements that there are only five such 
polyhedra: the tetrahedron, the cube, 
the octahedron, the dodecahedron and 
the icosahedron (see Figure 7).

Although Euclid used the geometric 
definition of Platonic solids, assuming 
all the polygons to be regular, modern 
mathematicians know that the argu-
ment does not depend on the geometry. 
In fact, a topological argument using 
only Euler’s formula shows that there 
are no possibilities other than the five 
shown in Figure 7.

Each Platonic solid can be described by 
two numbers: the number K of vertices 
in each face and the number M of faces 
meeting at each vertex. If f is the number 
of faces, then the total number of edges is 
e = (1/2)K × f, and the number of vertices is 
v = (1/M)K × f. Substituting these values in 
Euler’s formula f – v + e = 2, we find that 
elementary algebra leads to the equation:

1
Kf

1
4

1
2K

1
2M

+ = +

Figure 6. The proof that branched coverings 
produce all soccer balls depends on an analy-
sis of the sequence of colors around any ver-
tex. Because at least one of the edges meeting 
at each vertex bounds a pentagon (black), 
there is no vertex where only hexagons 
(white) meet. The sequence of faces around 
a vertex is always black-white-white, black-
white-white, and closes up after a number of 
faces that is a multiple of three.

Figure 5. Infinitely many soccer balls can be 
constructed by the method used in Figure 4. 
For example, an eight-fold branched cover-
ing of the standard soccer ball can be built by 
using eight copies of the sliced-open coat of 
the standard ball to create a soccer ball with 
96 pentagons and 160 hexagons. The eight 
pieces fit together like sections of an orange. 
The author and his collaborator Volker Braun-
gardt have proved that every soccer ball is a 
branched covering of the standard one.
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The possible solutions can be deter-
mined quite easily. The complete list of 
possible values for the pairs (K, M) is:

(3, 3) for the tetrahedron
(4, 3) and (3, 4) for the cube and the 
octahedron
(5, 3) and (3, 5) for the dodecahe-
dron and the icosahedron.

Strictly speaking, this is only the list of 
genuine polyhedra satisfying the above 
equation. The equation does have other 
solutions in positive integers. These so-
lutions correspond to so-called degener-
ate Platonic solids, which are not bona 
fide polyhedra. One family of these 
degenerate polyhedra has K=2 and M 
arbitrary, and the other has M=2 and K 
arbitrary. The first case can be thought 
of as a beach ball that is a sphere di-
vided into M sections in the manner of 
a citrus fruit.

Finding Generalized Soccer Balls
The Platonic solids give rise to general-
ized soccer balls by a procedure known 
as truncation. Suppose we take a sharp 
knife and slice off each of the corners of 
an icosahedron. At each of the 12 verti-
ces of the icosahedron, five faces come 
together at a point. When we slice off 
each vertex, we get a small pentagon, 
with one side bordering each of the faces 
that used to meet at that vertex. At the 
same time, we change the shape of the 
20 triangles that make up the faces of the 
icosahedron. By cutting off the corners 
of the triangles, we turn them into hexa-
gons. The sides of the hexagons are of 
two kinds, which occur alternately: the 
remnants of the sides of the original tri-
angular faces of the icosahedron, and the 
new sides produced by lopping off the 
corners. The first kind of side borders 
another hexagon, and the second kind 
touches a pentagon. In fact, the polyhe-
dron we have obtained is nothing but 
the standard soccer ball. Mathematicians 
call it the truncated icosahedron.

The same truncation procedure 
can be applied to the other Platonic 
solids. For example, the truncated 
tetrahedron consists of triangles and 
hexagons, such that the sides of the 
triangles meet only hexagons, while 
the sides of the hexagons alternately 
meet triangles and hexagons. This is a 
generalized soccer ball with k=3, m=3, 
n=2 (and l = m × n = 6). The truncated 
icosahedron gives values for k, m and 
n of 5, 3 and 2. The remaining trunca-
tions give (k, m, n) = (4, 3, 2) for the oc-
tahedron, (3, 4, 2) for the cube, and (3, 

5, 2) for the dodecahedron. In addition, 
we can truncate beach balls to obtain 
generalized soccer balls with (k, m, n) 
= (k, 2, 2), where k can be any integer 
greater than 2.

Are these the only possibilities for 
generalized soccer ball patterns, or are 
there others? Again, we can answer 
this question by using Euler’s formula, 
f – e + v = 2. Just as we did for the Pla-
tonic solids, we can express the number 
of faces, edges and vertices in terms of 
our basic data. Here this is the number 
b of black faces, the number w of white 
faces, and the parameters k, m and n. 
Now, because the number of faces meet-
ing at a vertex is not fixed, we do not 
obtain an equation, but an inequality 
expressing the fact that the number of 
faces meeting at each vertex is at least 3. 
The result is a constraint on k, m and n 
that can be put in the following form:

1
kb

n + 1
12

1
2k

1
2m

+ ≤ +

This may look complicated, but it can 
easily be analyzed, just like the equation 
leading to the Platonic solids. It is not 
hard to show that n can be at most equal 
to 6, because otherwise the left-hand side 
would be greater than the right-hand 
side. With a little more effort, it is pos-
sible to compile a complete list of all the 
possible solutions in integers k, m and n.

Alas, the story does not end there. 
There are some triples, such as (k, m, 

n) = (4, 4, 1), that satisfy the inequality 
for suitable values of b but do not arise 
from generalized soccer balls. However, 
Braungardt and I were able to determine 
the values of (k, m, n) that do have real-
izations as soccer balls; these are shown 
in the table in Figure 9, where we also 
illustrate the smallest realizations for 
a few types. Notice that all of the ones 
with n=2 come from truncations of Pla-
tonic solids.

The polyhedra listed here have vari-
ous interesting properties, of which I’ll 
mention just one. Besides entry 10 in 
this table, which is of course the stan-
dard soccer ball, the table contains three 

Figure 8. Chopping off corners, or truncation, 
converts any Platonic solid into a general-
ized soccer ball. In particular, the standard 
soccer ball is a truncated icosahedron. After 
truncation, the 20 triangular faces of the ico-
sahedron become hexagons; the 12 vertices, 
as shown here, turn into pentagons.

Figure 7. The five basic Platonic solids shown here have been known since antiquity. Exam-
ples of all generalized soccer-ball patterns can be generated by altering Platonic solids.

cube
tetrahedron

icosahedron

octahedron

dodecahedron
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other fullerenes: numbers 14 and 20, 
and the case k=6 of entry 17. The num-
bers of hexagons in these examples are 
30, 60 and 2, respectively. (Note that in 
the latter case the color scheme is re-
versed, so the hexagons are black rather 

than white.) The numbers of carbon at-
oms are 80, 140 and 24, respectively. The 
last of these is the only fullerene with 24 
atoms. In the case of 80 atoms, there 
are 7 different fullerenes with disjoint 
pentagons, but only one occurs in our 
table of generalized soccer balls. For 140 
atoms, there are 121,354 fullerenes with 
disjoint pentagons.

Braungardt and I discovered some-
thing very intriguing when we tried to 
see whether every generalized soccer 
ball comes from a branched covering 
of one of the entries in our table. This is 
true, we found, for all the triples with 
n=2, that is, for generalized soccer balls 
for which black and white faces alter-
nate around the sides of each white 
face. However, it is not true for other 
values of n! The easiest example dem-
onstrating this failure arises for the tri-
ple (k, m, n) = (3, 1, 3), meaning that we 
have black and white triangles arranged 

in such a way that the sides of each 
black triangle meet only white ones, 
and each white triangle has exactly one 
side that meets a black one. The mini-
mal example is just a tetrahedron with 
one face painted black (Figure 10a). An-
other realization is an octahedron with 
two opposite faces painted black (Figure 
10b). This is not a branched covering of 
the painted tetrahedron! A branched 
covering of the tetrahedron would have 
3, 6, 9, … faces meeting at every ver-
tex—but the octahedron has 4.

The reason for this strange behavior is 
a subtle difference between the case n=2 
and the cases n>2. In the tetrahedron 
example, there are two different kinds 
of vertices: a vertex at which only white 
faces meet, and three vertices where one 
black and two white faces meet. More-
over, the painted octahedron has yet an-
other kind of vertex. But in the case n=2, 
all the vertices look essentially the same. 
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Figure 9. Generalized soccer balls fall into 20 types. In this table, k represents the number of sides in any black face; the product m × n is the 
number of sides in any white face. Every side of a black face meets a white face. Every nth side of a white face meets a black face. The columns 
b and w represent the number of black and white faces in the simplest representative of each type. For the types with n=2, every generalized 
soccer ball of that type is a branched covering of the simplest one. However, this is not true for other values of n. The minimal realization of 
type 8 is combinatorially the same as the 2006 World Cup ball shown in Figure 2, whereas type 10 is the standard soccer ball.

Figure 10. The tetrahedron with just one black 
face (a) is the minimal realization of soccer-
ball type 15 in Figure 9, where (k, m, n) = (3, 
1, 3). Another realization, an octahedron with 
two opposite black faces (b), is not a branched 
covering of a, showing that it is not possible 
to produce all generalized soccer balls with 
n>2 using branched coverings.

a b
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Every vertex has the same sequence of 
colors, which goes black, white, white, 
black, white, white, …, with only the 
length of the sequence left open. Thus 
the adjacency conditions provide a de-
gree of control over the local structure 
of any generalized soccer ball with n=2. 
This control is lacking in the n>2 case. 
At present, therefore, it is possible to de-
scribe all generalized soccer balls with 
n=2: They are branched coverings of 
truncated Platonic solids. But there is no 
simple way to produce all the general-
ized soccer balls with n>2.

Toroidal Soccer Balls 
From a topologist’s point of view, 
spherical soccer balls are just one par-
ticular example of maps drawn on sur-
faces. Because the definition of soccer 
balls through conditions (1), (2) and (3) 
does not specify that soccer-ball poly-
hedra should be spherical, there is a 
possibility that they might also exist in 
other shapes. Besides the sphere, there 
are infinitely many other surfaces that 
might occur: the torus (which is the sur-
face of a doughnut), the double torus, 
the triple torus (which is the surface of a 
pretzel), the quadruple torus, etc. These 
surfaces are distinguished from one an-
other by their genus, informally known 
as the number of holes: The sphere has 
genus zero, the torus has genus one, the 
double torus has genus two, and so on. 

There are soccer balls of all genera, 
because every surface is a branched cov-
ering of the sphere (in a slightly more 
general way than we discussed before). 
By arranging the branch points to be 
vertices of some soccer ball graph on 
the sphere, we can generate soccer ball 
graphs on any surface. Figure 11a shows 
a toroidal soccer ball obtained from a 

two-fold branched covering of the stan-
dard spherical ball. In this case there are 
four branch points. Note that a two-fold 
branched covering always doubles the 
number of pentagons and hexagons. 

Here is an easier construction of a 
toroidal soccer ball. Take the standard 
spherical soccer ball and cut it open 
along two disjoint edges. Opening 
up the sphere along each cut produc-
es something that looks rather like a 
sphere from which two disks have been 
removed. This surface has a soccer-ball 
pattern on it, and the two boundary 
circles at which we have opened the 
sphere each have two vertices on them. 
If the cut edges are of the same type, 
meaning that along both of them two 
white faces met in the original spherical 
soccer ball, or that along both of them a 
black face met a white face, then we can 
glue the two boundary circles together 
so as to match vertices with vertices. 
(See Figure 11b for step-by-step illustra-
tions of this construction.) The surface 
built in this way is again a torus. It has 
the structure of a polyhedron that satis-
fies conditions (1), (2) and (3), and is 
therefore a soccer ball. 

This second toroidal soccer ball is not a 
branched covering of the standard spher-
ical ball, because it has the same numbers 
of pentagons and hexagons (12 and 20 
respectively) as the standard spherical 
ball. For a branched covering these num-
bers would be multiplied by the degree 
of the covering. In this case, the failure 
is not caused by loss of control over the 
local structure of the pattern (as in the 
previous section), but by a global prop-
erty of the torus (the hole). Thus the basic 
result that all spherical soccer balls are 
branched coverings of the standard one 
is not true for soccer balls with holes. 

Coda 
Soccer balls provide ample illustra-
tions of the intimate connection that 
exists between graphs on surfaces 
and branched coverings. This circle of 
ideas is also connected to subtle ques-
tions in algebraic geometry, where the 
combinatorics of maps on surfaces en-
capsulates data from number theory 
in mysterious ways. Following the 
terminology introduced by Alexan-
der Grothendieck, one of the leading 
mathematicians of the 20th century, 
the relevant graphs on the sphere are 
nowadays called dessins d’enfants. 
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Figure 11. Toroidal soccer balls are of two 
kinds: those that are branched coverings 
of spherical ones, and those that are not. A 
branched double cover of the standard spheri-
cal soccer ball produces a toroidal ball with 24 
black and 40 white faces (a). Opening up the 
standard soccer ball along two edges, deform-
ing it to a tube and then matching the ends of 
the tube produces a toroidal soccer ball with 
12 black and 20 white faces (b). This pattern 
cannot be obtained as a branched covering.
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