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Classical parametrized stable h-cobordism theorem. Given a homotopy equiv-
alence between smooth manifolds M ' N , the strategy to determine whether M
and N are diffeomorphic is to try to construct an h-cobordism between them.
By the classical h-cobordism (or s-cobordism) theorem, the obstructions to the h-
cobordism being trivial, which would imply that M ∼= N , are classified in terms of
their Whitehead torsion τ ∈Wh(π1M). The Whitehead group by definition is the
quotient of K1(π1M) by ±g ∈ π1M .

Theorem 0.1 ([2, 15, 16] ). Suppose M is a manifold with dim(M) ≥ 5. There is
an isomorphism

{iso classes of h-cobordisms on M} ∼= Wh(π1M).

In order to study the space of all diffeomorphisms of M , it is necessary to topol-
ogize these obstructions [9, 18]. The Whitehead group Wh(π1M) is the π0 of the
h-cobordism spaceH(M), whose k-simplices are h-cobordism bundles over ∆k. The
aforementioned theorem says that π0H(M) can be computed in terms of K-theory.
We can ask the same question about the higher homotopy groups of this moduli
space:

Can we compute πiH(M) in terms of algebraic K-theory?

The answer is yes, but only in a stable range, namely in the range where H(M)
is equivalent to the stable version H∞(M) obtained by multiplying M by copies
of I to increase its dimension [10]. This is the content of the celebrated “stable
parametrized h-cobordism theorem.”

Theorem 0.2 ([17]). There is a decomposition

(1) A(X) ' Σ∞X+ ×Wh(X),

where Wh(X) is a spectrum with the property that for a smooth compact manifold
M , the underlying infinite loop space of ΩWh(M) is equivalent to the stable h-
cobordism space H∞(M).

Weiss and Williams show that H∞(M) provides the information that accesses
the diffeomorphism group of M in a stable range [18].

Equivariant h-cobordism spaces. Now suppose G is a finite group acting on a
smooth manifold M with corners so that it has “trivial action on corners,” namely
M is a G-manifold modeled locally by G ×H V × [0,∞)k, for varying H ≤ G
and H-representations V . Our goal is to understand the stable moduli space of
equivariant h-cobordisms H∞G (M) we constructed in [6] and show that it can be
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computed, at least in a range, by equivariant algebraic K-theory. Equivariant A-
theory of a G-space AG(X) was constructed in [13] using the machinery of spectral
Mackey functors [7, 8, 5, 3, 4].1 The main question/conjecture is the following.

Question 0.3. For a compact smooth G-manifold M , is there a splitting

(2) AG(M) ' Σ∞GM ×WhG(M)

analogous to the nonequivariant one from equation (1), where Ω∞+1WhG(M)G '
H∞G (M)?

An equivariant h-cobordism (W ;M,N) between compact G manifolds M and N
is an h-cobordism W where the inclusions M ↪→ W and N ↪→ W are G-homotopy
equivalences. For an equivariant parametrized stable h-cobordism theorem, we
need to stabilize h-cobordisms with respect to representation disks. This is already
apparent in the equivariant case on π0: the equivariant Whitehead torsion of an
equivariant h-cobordism M ↪→ W is the trivial element of the equivariant White-
head group WhG(M) if and only if there exists a G-representation V such that the
equivariant h-cobordism (W ×D(V );M ×D(V ), N ×D(V )) is trivial, where D(V )
is the unit disk in the representation V [1].

What underlies this result is the phenomenon that often equivariant results in
manifold topology do not generalize unless there is a difference in the dimensions
between fixed points. An equivariant map is isovariant if if preserves stabilizers, or
fixed point strata. An equivariant h-cobordism is isovariant if the inclusion maps of
the boundaries are isovariant homotopy equivalences. If a G-manifold satisfies the
so-called “weak gap hypotheses” where the difference between dimensions of differ-
ent fixed points is at least 3, then an equivariant h-cobordism on M is an isovariant
h-cobordism [11]. The idea is that stabilizing with respect to representation disks
increases the gaps between dimensions of fixed points.

For a compact smooth G-manifold M , denote by M[H] be compactification of
the subspace of points with isotropy H, by removing tubular neighborhoods of
smaller fixed-point submanifolds. Note that these will be manifolds with corners.
Furthermore, denote by WH the Weyl group of H with respect to G. In work in
progress, we prove the following unstable splitting result for isovariant h-cobordism
spaces, which on π0 recovers a result of Browder-Quinn and Rothenberg.

Theorem 0.4 (Goodwillie-Igusa-Malkiewich-M.). Let M be a compact smooth G-
manifold. If dimM[H]/WH ≥ 5, then the space of isovariant h-cobordisms satisfies
a splitting

Hiso
G (M) '

∏
(H)≤G

H(M[H]/WH).

When we stabilize, the spaces of isovariant and equivariant h-cobordisms agree,
and we obtain the following stable result about equivariant h-cobordism spaces.

Theorem 0.5 (Goodwillie-Igusa-Malkiewich-M.). Let M be a compact smooth G-
manifold. Then the stable space of equivariant h-cobordisms (stabilized with respect

1We note that AG(X) is not the “K-theory of group actions for the G-action on the category
of retractive spaces over X. That construction yields a G-spectrum that we call Acoarse

G (X) and

study further in [12].
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to representation disks) satisfies a splitting

H∞G (M) '
∏

(H)≤G

H∞(MH
hWH).

We can now ask the analogous question as before about this moduli space of equi-
variant h-cobordisms:

Can we describe H∞G (M) in terms of equivariant algebraic K-theory?

Combined with the results of [14], we obtain a sequence in G-spectra

AG(M)→ Σ∞GM →WhG(M)

where Ω∞+1WhG(M)G ' H∞G (M), a significant step toward Question 0.3.
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[1] Shôrô Araki and Katsuo Kawakubo. Equivariant s-cobordism theorems. J. Math. Soc. Japan,
40(2):349–367, 1988.

[2] D. Barden. The structure of manifolds. Ph.D. thesis, Cambridge, 1963.

[3] Clark Barwick. Spectral Mackey functors and equivariant algebraic K-theory (I). Advances
in Mathematics, 304:646–727.

[4] Clark Barwick, Saul Glasman, and Jay Shah. Spectral Mackey functors and equivariant
algebraic K-theory, II. Tunis. J. Math., 2(1):97–146, 2020.
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