VC 7.3

4. First, we evaluate $\int_S \nabla \times F \cdot dS$. Parameterize S by

$$X(r, \theta) = \left(r \cos \theta, r \sin \theta, -\sqrt{4 - r^2} \right)$$

where r goes from 0 to 2 and θ goes from 0 to 2π. The tangent vectors are

$$T_r = \left(\cos \theta, \sin \theta, \frac{r}{\sqrt{4 - r^2}} \right)$$
$$T_\theta = (-r \sin \theta, r \cos \theta, 0)$$

and the normal vector is

$$T_\theta \times T_r = \begin{vmatrix} i & j & k \\ -r \sin \theta & r \cos \theta & 0 \\ \cos \theta & \sin \theta & \frac{r}{\sqrt{4 - r^2}} \end{vmatrix} = \frac{r^2}{\sqrt{4 - r^2}} \left(\cos \theta \mathbf{i} + \sin \theta \mathbf{j} \right) - r \mathbf{k}.$$

Notice that, since $r \geq 0$, the k component of this normal vector is ≤ 0; we have the downward pointing normal.

$$\nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2y - z & x + y^2 - z & 4y - 3x \end{vmatrix} = 5\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

Now we can integrate:

$$\int_S \nabla \times F \cdot dS = \int_0^{2\pi} \int_0^2 \left(\frac{r^2}{\sqrt{4 - r^2}} \left(5 \cos \theta + 2 \sin \theta \right) + r \right) dr \ d\theta$$
$$= \int_0^{2\pi} \left(5 \cos \theta + 2 \sin \theta \right) d\theta \int_0^2 \frac{r^2}{\sqrt{4 - r^2}} dr + \int_0^{2\pi} \int_0^2 r \ dr \ d\theta$$
$$= (5 \sin \theta - 2 \cos \theta) \bigg|_0^{2\pi} \int_0^2 \frac{r^2}{\sqrt{4 - r^2}} dr + 2\pi \int_0^2 r \ dr$$
$$= 0 \int_0^2 \frac{r^2}{\sqrt{4 - r^2}} dr + 2\pi \left(\frac{r^2}{2} \right) \bigg|_0^2 = 4\pi.$$

Next, calculate $\oint_{\partial S} F \cdot ds$. The appropriate orientation for ∂S is clockwise when viewed from the positive k direction. A parameterization is

$$\mathbf{x}(t) = (2 \cos t, -2 \sin t, 0),$$

where t goes from 0 to 2π, and the tangent vector is

$$\mathbf{x}'(t) = (-2 \sin t, -2 \cos t, 0).$$
The line integral comes out to
\[\oint_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \int_{x} (2y - z) \, dx + (x + y^2 - z) \, dy + (4y - 3x) \, dz \]
\[= \int_{0}^{2\pi} 2(-2 \sin t)(-2 \sin t) \, dt + (2 \cos t + 4 \sin^2 t)(-2 \cos t) \, dt \]
\[= \int_{0}^{2\pi} (8 \sin^2 t - 4 \cos^2 t - 8 \sin^2 t \cos t) \, dt \]
\[= \int_{0}^{2\pi} (4(1 - \cos 2t) - 2(1 + \cos 2t)) \, dt - 8 \int_{0}^{2\pi} \sin^2 t \cos t \, dt \]
\[= \left(2 - 6 \cos 2t\right) \bigg|_{0}^{2\pi} - \frac{8}{3} \sin^3 t \bigg|_{0}^{2\pi} = 4\pi. \]

The content of Stokes’ theorem is that these two integrals are equal.

10. As suggested, consider a vector field \(\mathbf{F}(x, y, z) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j} \), where \(M \) and \(N \) are scalar functions not depending on \(z \). Suppose that \(D \) is a closed, bounded region in the \(xy \)-plane with boundary \(C \) and orient \(C \) so that \(D \) is on the left as one traverses \(C \). This is the correct orientation to apply Stokes’ theorem if we choose the upward pointing normal for \(D \). By Stokes’ theorem,
\[\iint_{D} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_{C} \mathbf{F} \cdot d\mathbf{s} = \oint_{C} M \, dx + N \, dy. \] (1)

Calculate the left hand side.
\[\nabla \times \mathbf{F} = \frac{\partial N}{\partial x} \mathbf{i} - \frac{\partial M}{\partial y} \mathbf{j} \bigg| = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k} \]

(Remember that \(M \) and \(N \) do not depend on \(z \), so \(\frac{\partial N}{\partial z} \) and \(\frac{\partial M}{\partial z} \) are 0.) Using \(x \) and \(y \) as parameters for \(D \), the tangent vectors are \(\mathbf{i} \) and \(\mathbf{j} \), respectively, so the normal vector is \(\mathbf{i} \times \mathbf{j} = \mathbf{k} \).

\[\iint_{D} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k} \cdot \mathbf{k} \, dx \, dy \]
\[= \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy \] (2)

Combining equations (1) and (2) we get Green’s theorem:
\[\oint_{C} M \, dx + N \, dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy. \]

16. Let \(D \) be the region in the plane \(2x - 3y + 5z = 17 \) enclosed by the curve \(C \). Since the plane is a level set of the function \(f(x, y, z) = 2x - 3y + 5z \), we can get a normal vector by taking the gradient:
\[\mathbf{N} = \nabla f = 2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}. \]
Notice that \(\mathbf{N} \) does not depend on \(x, y, \) or \(z \). We want to compute \(\int_C \mathbf{F} \cdot d\mathbf{s} \), where \(\mathbf{F} \) is the vector field

\[
(3 \cos x + z) \mathbf{i} + (5x - e^y) \mathbf{j} - 3y \mathbf{k}.
\]

Using Stokes’ theorem we get

\[
\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_D \nabla \times \mathbf{F} \cdot d\mathbf{S}.
\]

\[
\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 \cos x + z & 5x - e^y & -3y
\end{vmatrix} = -3 \mathbf{i} + \mathbf{j} + 5 \mathbf{k}
\]

The unit normal vector to \(D \) is \(\pm \frac{\mathbf{N}}{||\mathbf{N}||} \); the sign is determined by the orientation of \(C \). Putting it all together,

\[
\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_D \nabla \times \mathbf{F} \cdot d\mathbf{S}
\]

\[
= \pm \frac{1}{||\mathbf{N}||} \iint_D (-3 \mathbf{i} + \mathbf{j} + 5 \mathbf{k}) \cdot (2 \mathbf{i} - 3 \mathbf{j} + 5 \mathbf{k}) \, dS
\]

\[
= \pm \frac{1}{||\mathbf{N}||} \iint_D 16 \, dS = \pm \frac{16}{||\mathbf{N}||} \text{(area of } D\text{)}.
\]

DELA 2.1

T/F

4. F

10. F

Problems

6. \(A \) is a 3 \(\times \) 3 matrix. The entries given are

\[
A = \begin{bmatrix}
-1 & 2 \\
3
\end{bmatrix}.
\]

Using \(a_{ji} = -a_{ij} \) we can get

\[
A = \begin{bmatrix}
-1 & 2 \\
1 & 3 \\
-2 & -3
\end{bmatrix}.
\]

The entries on the main diagonal have \(i = j \). For these elements, \(a_{ii} = -a_{ii} \), which means that \(a_{ii} = 0 \). Thus, the whole matrix is

\[
A = \begin{bmatrix}
0 & -1 & 2 \\
1 & 0 & 3 \\
-2 & -3 & 0
\end{bmatrix}.
\]
14. We assemble B by writing b_1, b_2, b_3, and b_4 in its columns:

$$B = \begin{bmatrix} 2 & 5 & 0 & 1 \\ -1 & 7 & 0 & 2 \\ 4 & -6 & 0 & 3 \end{bmatrix}.$$

The row vectors of B we get by reading horizontally:

$$[2 \ 5 \ 0 \ 1], \quad [-1 \ 7 \ 0 \ 2], \quad \text{and} \quad [4 \ -6 \ 0 \ 3].$$

20. In order to be lower triangular, our matrix A needs zeros above the main diagonal.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

To make A skew-symmetric, the entries below the main diagonal should be the negatives of those above:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Finally, a skew-symmetric matrix needs zeros on the main diagonal, since $a_{ii} = -a_{ii}$.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So in fact this matrix of zeros is the only 3×3 lower triangular skew-symmetric matrix.

22. A good example of a function that hits the same value twice but not three times is a quadratic function. If $f(t) = t(t - 1)$ then $f(0) = f(1) \neq f(2)$, since $f(0)$ and $f(1)$ are 0 and quadratic functions have no more than 2 roots. Any constant multiple of f will have this same property. So for A we could pick

$$A = \begin{bmatrix} t(t - 1) & 2t(t - 1) & 3t(t - 1) \\ 4t(t - 1) & 5t(t - 1) & 6t(t - 1) \\ 7t(t - 1) & 8t(t - 1) & 9t(t - 1) \end{bmatrix}.$$

DELA 2.2

T/F

4. F
Problems

2. If \(2A + B - 3C + 2D = A + 4C\), then we can rearrange to get

\[
D = \frac{1}{2}(-A - B + 7C).
\]

Now, substitute the given matrices for \(A\), \(B\), and \(C\) and simplify:

\[
D = \frac{1}{2}(-A - B + 7C) \\
= \frac{1}{2} \left(\begin{bmatrix} -2 & 1 & 0 \\ 3 & -1 & 2 \\ -1 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} + 7 \begin{bmatrix} -1 & -1 & 1 \\ 1 & 2 & 3 \\ -1 & 1 & 0 \end{bmatrix} \right) \\
= \frac{1}{2} \left(\begin{bmatrix} -10 & -5 & 5 \\ -3 & -1 & -2 \\ 1 & -1 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 1 & -2 \\ -3 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} -7 & -7 & 7 \\ 7 & 14 & 21 \\ -7 & 7 & 0 \end{bmatrix} \right) \\
= \frac{1}{2} \begin{bmatrix} -5 & -\frac{5}{2} & \frac{5}{2} \\ \frac{1}{2} & \frac{13}{2} & 9 \\ -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \end{bmatrix}.
\]

10. The vector \(Ac\) is a linear combination of the column vectors of \(A\). The coefficients of this linear combination are the entries of \(c\). The column vectors of \(A\) are

\[
\begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}, \quad \begin{bmatrix} -1 \\ 1 \\ -6 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix}.
\]

Now we can compute

\[
Ac = 2 \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ 1 \\ -6 \end{bmatrix} - 4 \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix} \\
= \begin{bmatrix} 6 \\ 4 \\ 14 \end{bmatrix} + \begin{bmatrix} -3 \\ 3 \\ -18 \end{bmatrix} + \begin{bmatrix} -16 \\ -20 \\ -12 \end{bmatrix} \\
= \begin{bmatrix} -13 \\ -13 \\ -16 \end{bmatrix}.
\]

24. If \(A\) and \(C\) are \(m \times n\) matrices, we aim to prove that

\[
(A^T)^T = A
\] \hspace{1cm} (1)

and

\[
(A + C)^T = A^T + C^T.
\] \hspace{1cm} (2)

Let \(a_{ij}\) be the entries of the matrix \(A\), with \(1 \leq i \leq m\) and \(1 \leq j \leq n\), and let \(c_{ij}\) be the entries of \(C\).
To prove (1), let \(B = A^T \). Since \(A \) is \(m \times n \), it follows that \(B \) is \(n \times m \). If \(b_{ij} \) are the entries of \(B \), with \(1 \leq i \leq n \) and \(1 \leq j \leq m \), then \(b_{ij} = a_{ji} \). Now, let \(D = B^T \), so that \(D = (A^T)^T \). The matrix \(B \) is \(n \times m \), so \(D \) will be \(m \times n \). The entries of \(D \) are \(d_{ij} = b_{ji} \), with \(1 \leq i \leq m \) and \(1 \leq j \leq n \). The dimensions of \(D \) and \(A \) are the same—both are \(m \times n \) matrices. Furthermore, \(d_{ij} = b_{ji} = a_{ij} \), so we can conclude that \(D = A \), that is, we have proved (1).

Let’s move on to (2). If \(E = A + C \) and \(e_{ij} \) are its entries then \(e_{ij} = a_{ij} + c_{ij} \) for \(1 \leq i \leq m \) and \(1 \leq j \leq n \). Its transpose is the \(n \times m \) matrix with entries \(e_{ji} \). On the other hand, the entries of \(A^T \) and \(C^T \) are \(a_{ji} \) and \(c_{ji} \), respectively, so the entries of \(F = A^T + C^T \) are \(f_{ij} = a_{ji} + c_{ji} \). Since \(A \) and \(C \) are \(m \times n \) matrices, \(A^T, C^T \) and \(F \) are \(n \times m \). For a start the dimensions of \(E^T \) agree with those of \(F \). As for the entries, \(f_{ij} = a_{ji} + c_{ji} = e_{ji} \), so we conclude that \(F = E^T \), which proves (2).

36. (a) In order for \(AA^T \) to be symmetric we need \((AA^T)^T = AA^T\). Well, part (3) of Theorem 2.2.21 tells us that

\[
(AA^T)^T = (A^T)^T A^T
\]

and then we can use part (1) to get

\[
(A^T)^T A^T = AA^T.
\]

(b) To show \((ABC)^T = C^TB^TC^T\), use part (3) of Theorem 2.2.21 twice:

\[
(ABC)^T = C^T(AB)^T = C^TB^TA^T.
\]

38. To differentiate a matrix function, take the derivative of each entry:

\[
\frac{d}{dt} t = 1,
\]

\[
\frac{d}{dt} \sin t = \cos t,
\]

\[
\frac{d}{dt} \cos t = -\sin t, \quad \text{and}
\]

\[
\frac{d}{dt} 4t = 4.
\]

Thus,

\[
\frac{dA}{dt} = \left[\begin{array}{cc} 1 & \cos t \\ -\sin t & 4 \end{array} \right].
\]

42. We integrate each entry of the matrix function:

\[
\int_0^\frac{\pi}{2} \cos t \, dt = \sin t \bigg|_0^{\frac{\pi}{2}} = 1 \quad \text{and}
\]

\[
\int_0^\frac{\pi}{2} \sin t \, dt = -\cos t \bigg|_0^{\frac{\pi}{2}} = 1,
\]

so the integral of \(A \) is

\[
\int_0^\frac{\pi}{2} A(t) \, dt = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
\]