Surface Integrals

Math 240 — Calculus III

Summer 2013, Session II

Wednesday, July 3, 2013
1. Scalar surface integrals
 Surface area

2. Vector surface integrals

3. Changing orientation
Definition

Let $X : D \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a smooth parameterized surface. Let f be a continuous scalar function whose domain includes $S = X(D)$. The **scalar surface integral** of f along X is

$$
\int \int_X f \, dS = \int \int_D f(X(s, t)) \|T_s \times T_t\| \, ds \, dt
$$

$$
= \int \int_D f(X(s, t)) \|N(s, t)\| \, ds \, dt.
$$
Example

Let S be the closed cylinder of radius 3 with axis along the z-axis, top face at $z = 15$, and bottom face at $z = 0$. Let’s calculate $\iint_S z \, dS$. Denote the lateral cylindrical face of S by S_1 and the bottom and top faces by S_2 and S_3, respectively.

We compute

$$\iint_{S_1} z \, dS = 675\pi,$$
$$\iint_{S_2} z \, dS = 0,$$
$$\iint_{S_3} z \, dS = 135\pi.$$

Therefore,

$$\iint_S z \, dS = \iint_{S_1} z \, dS + \iint_{S_2} z \, dS + \iint_{S_3} z \, dS = 810\pi.$$
Fact

If S is a smooth surface parameterized by $\mathbf{X} : D \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ then the surface area of S is given by

$$
\iint_{D} \| \mathbf{N} \| \, ds \, dt = \iint_{D} \| \mathbf{T}_s \times \mathbf{T}_t \| \, ds \, dt = \iint_{\mathbf{X}} 1 \, dS.
$$

Figure: The quantity $\| \mathbf{T}_s \times \mathbf{T}_t \|$ is the area of the gray square on the right.
Example

Recall our parameterization of a sphere:

\[X(s, t) = r (\cos s)(\sin t) \mathbf{i} + r (\sin s)(\sin t) \mathbf{j} + r (\cos t) \mathbf{k}. \]

We calculate

\[T_s = -r \sin s \sin t \mathbf{i} + r \cos s \sin t \mathbf{j}, \]
\[T_t = r \cos s \cos t \mathbf{i} + r \sin s \cos t \mathbf{j} - r \sin t \mathbf{k}, \]
\[N = -r^2 \cos s \sin^2 t \mathbf{i} - r^2 \sin s \sin^2 t \mathbf{j} - r^2 \sin t \cos t \mathbf{k}, \]
and \[||N|| = r^2 \sin t. \]

Therefore, the surface area of the sphere is

\[\int_0^\pi \int_0^{2\pi} r^2 \sin t \, ds \, dt = \int_0^\pi 2\pi r^2 \sin t \, dt = 4\pi r^2. \]
Definition
Let \(X : D \subseteq \mathbb{R}^2 \to \mathbb{R}^3 \) be a smooth parameterized surface. Let \(F \) be a continuous vector field whose domain includes \(S = X(D) \). The **vector surface integral** of \(F \) along \(X \) is

\[
\iint_X F \cdot dS = \iint_D F(X(s, t)) \cdot N(s, t) \, ds \, dt.
\]

In physical terms, we can interpret \(F \) as the flow of some kind of fluid. Then the vector surface integral measures the volume of fluid that flows through \(S \) per unit time. This is called the **flux** of \(F \) across \(S \).
The parametrized surface Y is the same as X, except that the standard normal vector arising from Y points in the opposite direction to the one arising from X.

The calculation in Example 7 generalizes thus: Suppose X is a smooth parametrized surface and Y is a smooth reparametrization of X via H, meaning that $Y(s,t) = X(u,v) = X(H(s,t))$.

Since H is assumed to be of class C^1, we can show from the chain rule that the standard normal vectors are related by the equation

$$N_Y(s,t) = \frac{\partial(u,v)}{\partial(s,t)} N_X(u,v).$$

(11)

(See the addendum at the end of this section for a derivation of formula (11).)

Formula (11) shows that N_Y is a scalar multiple of N_X. In addition, since H is invertible and both H and H^{-1} are of class C^1, it follows that the Jacobian of H is either always positive or always negative. (To see this, note that both $H \circ H^{-1}$ and $H^{-1} \circ H$ are the identity function. Hence, the chain rule may be applied to show that the derivative matrix $D_H(s,t)$ is invertible for each (s,t); therefore, its determinant, which is the Jacobian of H, must be nonzero. Since the determinant is a continuous function of the entries of H, it thus cannot change sign.) Hence, the standard normal N_Y either always points in the same direction as N_X or else always points in the opposite direction (Figure 7.20).

Under these assumptions, we say that both H and Y are orientation-preserving if the Jacobian $\frac{\partial(u,v)}{\partial(s,t)}$ is positive, orientation-reversing if $\frac{\partial(u,v)}{\partial(s,t)}$ is negative.

The following result, a close analogue of Theorem 1.4, Chapter 6, shows that smooth reparametrization has no effect on the value of a scalar line integral.

Theorem 2.4

Let $X: D_1 \to \mathbb{R}^3$ be a smooth parametrized surface and f any continuous function whose domain includes $X(D_1)$. If $Y: D_2 \to \mathbb{R}^3$ is any smooth reparametrization of X, then

$$\int \int_Y f \, dS = \int \int_X f \, dS.$$

This can be achieved by exchanging s and t:

$$T_t \times T_s = - (T_s \times T_t).$$

Figure: X and Y parameterize the same surface with opposite normal directions.