```
Stokes' and
    Gauss'
    Theorems
    Math 240
Stokes'
theorem
Gauss'
theorem
Calculating
volume
```


Stokes' and Gauss' Theorems

Math 240 - Calculus III

Summer 2013, Session II
Monday, July 8, 2013

```
Stokes' and

Stokes'
theorem
Gauss'
theorem

Stokes' and

Theorem (Green's theorem)
Let \(D\) be a closed, bounded region in \(\mathbb{R}^{2}\) with boundary \(C=\partial D\). If \(\mathbf{F}=M \mathbf{i}+N \mathbf{j}\) is a \(C^{1}\) vector field on \(D\) then
\[
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
\]

Notice that \(\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}=\nabla \times \mathbf{F}\).
Theorem (Stokes' theorem)
Let \(S\) be a smooth, bounded, oriented surface in \(\mathbb{R}^{3}\) and suppose that \(\partial S\) consists of finitely many \(C^{1}\) simple, closed curves. If \(\mathbf{F}\) is a \(C^{1}\) vector field whose domain includes \(S\), then
\[
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}=\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}
\]

\section*{Definition}

A smooth, connected surface, \(S\) is orientable if a nonzero normal vector can be chosen continuously at each point.

\section*{Examples}

Orientable planes, spheres, cylinders, most familiar surfaces Nonorientable Möbius band

To apply Stokes' theorem, \(\partial S\) must be correctly oriented.
Right hand rule: thumb points in chosen normal direction, fingers curl in direction of orientation of \(\partial S\).

Alternatively, when looking down from the normal direction, \(\partial S\) should be oriented so that \(S\) is on the left.

Stokes' and

\section*{Example}

Let \(S\) be the paraboloid \(z=9-x^{2}-y^{2}\) defined over the disk in the \(x y\)-plane with radius 3 (i.e. for \(z \geq 0\) ). Verify Stokes' theorem for the vector field
\[
\mathbf{F}=(2 z-y) \mathbf{i}+(x+z) \mathbf{j}+(3 x-2 y) \mathbf{k}
\]

\section*{Stokes' theorem}


We calculate
\[
\nabla \times \mathbf{F}=-3 \mathbf{i}-\mathbf{j}+2 \mathbf{k} \text { and } \mathbf{N}=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}
\]

Therefore,
\[
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(-6 x-2 y+2) d x d y=18 \pi
\]

Stokes' and

\section*{Example}

Let \(S\) be the paraboloid \(z=9-x^{2}-y^{2}\) defined over the disk in the \(x y\)-plane with radius 3 (i.e. for \(z \geq 0\) ). Verify Stokes' theorem for the vector field
\[
\begin{aligned}
\mathbf{F}= & (2 z-y) \mathbf{i}+(x+z) \mathbf{j}+(3 x-2 y) \mathbf{k} \\
& \iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(-6 x-2 y+2) d x d y=18 \pi
\end{aligned}
\]

Using Stokes' theorem, we can do instead
\[
\begin{aligned}
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s} & =\oint_{C}-y d x+x d y \\
& =\int_{0}^{2 \pi}(-3 \sin t)^{2}+(3 \cos t)^{2} d t=18 \pi
\end{aligned}
\]

Stokes' and

\section*{Example}

Let \(S\) be the paraboloid \(z=9-x^{2}-y^{2}\) defined over the disk in the \(x y\)-plane with radius 3 (i.e. for \(z \geq 0\) ). Verify Stokes' theorem for the vector field
\[
\begin{aligned}
& \mathbf{F}=(2 z-y) \mathbf{i}+(x+z) \mathbf{j}+(3 x-2 y) \mathbf{k} . \\
& \quad \iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(-6 x-2 y+2) d x d y=18 \pi .
\end{aligned}
\]

Applying Stokes' theorem a second time yields
\[
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S} & =\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}=\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\iint_{D} \nabla \times \mathbf{F} \cdot d \mathbf{S} \\
& =\iint_{D} 2 d \mathbf{S}=2(\text { area of } D)=18 \pi
\end{aligned}
\]

\section*{Gauss' theorem}

Theorem (Gauss' theorem, divergence theorem) Let \(D\) be a solid region in \(\mathbb{R}^{3}\) whose boundary \(\partial D\) consists of finitely many smooth, closed, orientable surfaces. Orient these surfaces with the normal pointing away from \(D\). If \(\mathbf{F}\) is a \(C^{1}\) vector field whose domain includes \(D\) then
\[
\oiint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V .
\]

\section*{Gauss' theorem}

\section*{Example}

Let \(\mathbf{F}\) be the radial vector field \(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}\) and let \(D\) the be solid cylinder of radius \(a\) and height \(b\) with axis on the \(z\)-axis and faces at \(z=0\) and \(z=b\). Let's verify Gauss' theorem. Let \(S_{1}\) and \(S_{2}\) be the bottom and top faces, respectively, and let \(S_{3}\) be the lateral face.


To orient \(\partial D\) for Gauss' theorem, choose normals
\[
\mathbf{n}_{1}=-\mathbf{k} \text { for } S_{1}, \mathbf{n}_{2}=\mathbf{k} \text { for } S_{2}, \text { and } \mathbf{n}_{3}=\frac{1}{a}(x \mathbf{i}+y \mathbf{j}) \text { for } S_{3} .
\]

Now we integrate over the surface
\[
\oiint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=b \iint_{S_{2}} d S+a \iint_{S_{3}} d S=3 \pi a^{2} b .
\]

\section*{Gauss' theorem}

\section*{Example}

Let \(\mathbf{F}\) be the radial vector field \(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}\) and let \(D\) the be solid cylinder of radius \(a\) and height \(b\) with axis on the \(z\)-axis and faces at \(z=0\) and \(z=b\). Let's verify Gauss' theorem. Let \(S_{1}\) and \(S_{2}\) be the bottom and top faces, respectively, and let \(S_{3}\) be the lateral face.

\[
\oiint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=b \iint_{S_{2}} d S+a \iint_{S_{3}} d S=3 \pi a^{2} b
\]

On the other hand, \(\nabla \cdot \mathbf{F}=3\).
Then
\[
\oiint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V=3 \iiint_{D} d V=3 \pi a^{2} b .
\]

Recall how we used Green's theorem to calculate the area of a plane region via a line integral around its boundary.
Theorem
Suppose \(D\) is a solid region in \(\mathbb{R}^{3}\) to which Gauss' theorem applies and \(\mathbf{F}\) is a \(C^{1}\) vector field such that \(\nabla \cdot \mathbf{F}\) is identically 1 on \(D\). Then the volume of \(D\) is given by
\[
\oiint_{\partial D} \mathbf{F} \cdot d \mathbf{S}
\]
where \(\partial D\) is oriented as in Gauss' theorem.
Some examples are
\[
\text { Volume of } D=\left\{\begin{array}{l}
\oiint_{\partial D}(x \mathbf{i}) \cdot d \mathbf{S} \\
\oiint_{\partial D}(y \mathbf{j}) \cdot d \mathbf{S} \\
\oiint_{\partial D}(z \mathbf{k}) \cdot d \mathbf{S}
\end{array} .\right.
\]

\section*{Example}

Let's calculate the volume of a truncated cone via an integral over its surface. Let \(D\) be the solid bounded by the cone
\[
x^{2}+y^{2}=(2-z)^{2}
\]
and the planes \(z=1\) and \(z=0\). Let's use the vector field \(\mathbf{F}=x \mathbf{i}\), so that \(\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0\) when \(S\) is the top or bottom face. Then we just need to calculate
\[
\mathbf{N}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & -1 \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right|=x \mathbf{i}+y \mathbf{j}+r \mathbf{k}
\]
and the volume of \(D\) is
\[
\iint_{S}(x \mathbf{i}) \cdot d \mathbf{S}=\int_{0}^{2 \pi} \int_{1}^{2}(r \cos \theta)^{2} d r d \theta=\frac{7}{3} \pi
\]```

