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Theorem (Green’s theorem)

Let D be a closed, bounded region in R2 with boundary
C = ∂D. If F =M i+N j is a C1 vector field on D then∮

C
M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dx dy.

Notice that
(
∂N
∂x − ∂M

∂y

)
k = ∇× F.

Theorem (Stokes’ theorem)

Let S be a smooth, bounded, oriented surface in R3 and
suppose that ∂S consists of finitely many C1 simple, closed
curves. If F is a C1 vector field whose domain includes S, then∮

∂S
F · ds =

∫∫
S
∇× F · dS.
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Stokes’ theorem and orientation

Definition
A smooth, connected surface, S is orientable if a nonzero
normal vector can be chosen continuously at each point.

Examples

Orientable planes, spheres, cylinders, most familiar surfaces

Nonorientable Möbius band

To apply Stokes’ theorem, ∂S must be correctly oriented.

Right hand rule: thumb points in chosen normal direction,
fingers curl in direction of orientation of ∂S.

Alternatively, when looking down from the normal direction,
∂S should be oriented so that S is on the left.



Stokes’ and
Gauss’

Theorems

Math 240

Stokes’
theorem

Gauss’
theorem

Calculating
volume

Stokes’ theorem

Example

Let S be the paraboloid z = 9− x2 − y2
defined over the disk in the xy-plane with
radius 3 (i.e. for z ≥ 0). Verify Stokes’
theorem for the vector field

F = (2z − y) i+ (x+ z) j+ (3x− 2y)k.
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7.3 Stokes’s and Gauss’s Theorems 491

THEOREM 3.2 (STOKES’S THEOREM) Let S be a bounded, piecewise smooth,
oriented surface in R3. Suppose that ∂S consists of finitely many piecewise C1,
simple, closed curves each of which is oriented consistently with S. Let F be a
vector field of class C1 whose domain includes S. Then∫ ∫

S
∇ × F · dS =

∮
∂S

F · ds.

Theorem 3.2 says that the total (net) “infinitesimal rotation,” or swirling, of
a vector field F over a surface S is equal to the circulation of F along just the
boundary of S.

EXAMPLE 1 Let S be the paraboloid z = 9 − x2 − y2 defined over the disk
in the xy-plane of radius 3 (i.e., S is defined for z ≥ 0 only). Then ∂S consists of
the circle

C = {(x, y, z) | x2 + y2 = 9, z = 0}.
Orient S with the upward-pointing unit normal vector n. (See Figure 7.31.) We
verify Stokes’s theorem for the vector field

F = (2z − y) i + (x + z) j + (3x − 2y) k.
y

x

z

n

S

C =   S

Figure 7.31 The
paraboloid
z = 9 − x2 − y2

oriented with upward
normal n. Note that
the boundary circle
C is oriented
consistently with S.

We calculate

∇ × F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

2z − y x + z 3x − 2y

∣∣∣∣∣∣∣
= (−2 − 1) i + (2 − 3) j + (1 − (−1)) k = −3i − j + 2k.

An upward-pointing normal vector N is given by

N = 2x i + 2y j + k.

(This vector may, of course, be normalized to give an “orientation normal” n.)
Therefore, using formula (5) of §7.2 we have, where D = {(x, y) | x2 + y2 ≤ 9},∫ ∫

S
∇ × F · dS =

∫ ∫
D

(−3i − j + 2k) · (2x i + 2y j + k) dx dy

=
∫ ∫

D
(−6x − 2y + 2) dx dy

=
∫ ∫

D
−6x dx dy −

∫ ∫
D

2y dx dy +
∫ ∫

D
2 dx dy.

By the symmetry of D and the fact that −6x and 2y are odd functions, we have
that the first two double integrals are zero. The last double integral gives twice
the area of D. Thus, ∫ ∫

S
∇ × F · dS = 2 · π (32) = 18π.

On the other hand, we may parametrize the boundary of S as⎧⎨
⎩

x = 3 cos t
y = 3 sin t
z = 0

0 ≤ t ≤ 2π.

We calculate

∇× F = − 3 i− j+ 2k and N = 2x i+ 2y j+ k.

Therefore,∫∫
S
∇× F · dS =

∫∫
D
(−6x− 2y + 2) dx dy = 18π.
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By the symmetry of D and the fact that −6x and 2y are odd functions, we have
that the first two double integrals are zero. The last double integral gives twice
the area of D. Thus, ∫ ∫

S
∇ × F · dS = 2 · π (32) = 18π.

On the other hand, we may parametrize the boundary of S as⎧⎨
⎩

x = 3 cos t
y = 3 sin t
z = 0

0 ≤ t ≤ 2π.

∫∫
S
∇× F · dS =

∫∫
D
(−6x− 2y + 2) dx dy = 18π.

Using Stokes’ theorem, we can do instead∮
∂S

F · ds =
∮
C
−y dx+ x dy

=

∫ 2π

0
(−3 sin t)2 + (3 cos t)2 dt = 18π.
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(−6x − 2y + 2) dx dy

=
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D
−6x dx dy −
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By the symmetry of D and the fact that −6x and 2y are odd functions, we have
that the first two double integrals are zero. The last double integral gives twice
the area of D. Thus, ∫ ∫

S
∇ × F · dS = 2 · π (32) = 18π.

On the other hand, we may parametrize the boundary of S as⎧⎨
⎩

x = 3 cos t
y = 3 sin t
z = 0

0 ≤ t ≤ 2π.

∫∫
S
∇× F · dS =

∫∫
D
(−6x− 2y + 2) dx dy = 18π.

Applying Stokes’ theorem a second time yields∫∫
S
∇× F · dS =

∮
∂S

F · ds =
∮
∂D

F · ds =
∫∫

D
∇× F · dS

=

∫∫
D
2 dS = 2 (area of D) = 18π.
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Theorem (Gauss’ theorem, divergence theorem)

Let D be a solid region in R3 whose boundary ∂D consists of
finitely many smooth, closed, orientable surfaces. Orient these
surfaces with the normal pointing away from D. If F is a C1

vector field whose domain includes D then∫∫
∂D

F · dS =

∫∫∫
D
∇ · F dV.
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Example

Let F be the radial vector field x i+ y j+ z k
and let D the be solid cylinder of radius a and
height b with axis on the z-axis and faces at
z = 0 and z = b. Let’s verify Gauss’ theorem.
Let S1 and S2 be the bottom and top faces,
respectively, and let S3 be the lateral face.

P1: OSO
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494 Chapter 7 Surface Integrals and Vector Analysis

Gauss’s theorem says that the “total divergence” of a vector field in a bounded
region in space is equal to the flux of the vector field away from the region (i.e.,
the flux across the boundary surface(s)).

EXAMPLE 3 Let F be the radial vector field x i + y j + z k and let D be the
solid cylinder of radius a and height b, located so that axis of the cylinder is the
z-axis and the top and bottom of the cylinder are at z = b and z = 0. (See Fig-
ure 7.35.) We verify Gauss’s theorem for this vector field and solid region.

y

x

z
n2

n3

n1

S3

S1

S2

Figure 7.35 The
solid cylinder D of
Example 3.

The boundary of D consists of three smooth pieces: (1) the bottom surface S1

that is a portion of the plane z = 0 and oriented by the normal n1 = −k, (2) the
top surface S2 that is a portion of the plane z = b and is oriented by the normal
vector n2 = k, and (3) a portion of the lateral cylinder S3 given by the equation
x2 + y2 = a2 and oriented by the unit vector n3 = (x i + y j)/a. (The vector n3

may be obtained by normalizing the gradient of f (x, y, z) = x2 + y2 that defines
S3 as a level set.) Then∫

©
∫

∂ D
F · dS =

∫ ∫
S1

F · dS +
∫ ∫

S2

F · dS +
∫ ∫

S3

F · dS

=
∫ ∫

S1

(x i + y j + z k) · (−k) d S +
∫ ∫

S2

(x i + y j + z k) · k d S

+
∫ ∫

S3

(x i + y j + z k) ·
(

x i + y j

a

)
d S

=
∫ ∫

S1

−z d S +
∫ ∫

S2

z d S +
∫ ∫

S3

x2 + y2

a
d S

= 0 +
∫ ∫

S2

b d S +
∫ ∫

S3

a2

a
d S,

since along S1, z is 0; along S2, z is equal to b; and along S3, x2 + y2 = a2. Thus,∫
©
∫

∂ D
F · dS = b · area of S2 + a · area of S3 = bπa2 + a(2πab) = 3πa2b,

from familiar geometric formulas.
On the other hand,

∇ · F = ∂

∂x
(x) + ∂

∂y
(y) + ∂

∂z
(z) = 3,

so that ∫ ∫ ∫
D

∇ · F dV =
∫ ∫ ∫

D
3 dV = 3 · volume of D = 3πa2b,

which can be checked readily. ◆

In general, if F = x i + y j + z k and D is a region to which Gauss’s theorem
applies, then∫

©
∫

∂ D
F · dS =

∫ ∫ ∫
D

∇ · F dV =
∫ ∫ ∫

D
3 dV = 3 · volume of D.

Hence,

1
3

∫
©
∫

∂ D
(x i + y j + z k) · dS = volume of D.

To orient ∂D for Gauss’ theorem, choose normals

n1 = −k for S1, n2 = k for S2, and n3 =
1
a(x i+ y j) for S3.

Now we integrate over the surface∫∫
∂D

F · dS = b

∫∫
S2

dS + a

∫∫
S3

dS = 3πa2b.



Stokes’ and
Gauss’

Theorems

Math 240

Stokes’
theorem

Gauss’
theorem

Calculating
volume

Gauss’ theorem

Example

Let F be the radial vector field x i+ y j+ z k
and let D the be solid cylinder of radius a and
height b with axis on the z-axis and faces at
z = 0 and z = b. Let’s verify Gauss’ theorem.
Let S1 and S2 be the bottom and top faces,
respectively, and let S3 be the lateral face.

P1: OSO

coll50424˙ch07 PEAR591-Colley July 29, 2011 13:58

494 Chapter 7 Surface Integrals and Vector Analysis

Gauss’s theorem says that the “total divergence” of a vector field in a bounded
region in space is equal to the flux of the vector field away from the region (i.e.,
the flux across the boundary surface(s)).

EXAMPLE 3 Let F be the radial vector field x i + y j + z k and let D be the
solid cylinder of radius a and height b, located so that axis of the cylinder is the
z-axis and the top and bottom of the cylinder are at z = b and z = 0. (See Fig-
ure 7.35.) We verify Gauss’s theorem for this vector field and solid region.

y

x

z
n2

n3

n1

S3

S1

S2

Figure 7.35 The
solid cylinder D of
Example 3.

The boundary of D consists of three smooth pieces: (1) the bottom surface S1

that is a portion of the plane z = 0 and oriented by the normal n1 = −k, (2) the
top surface S2 that is a portion of the plane z = b and is oriented by the normal
vector n2 = k, and (3) a portion of the lateral cylinder S3 given by the equation
x2 + y2 = a2 and oriented by the unit vector n3 = (x i + y j)/a. (The vector n3

may be obtained by normalizing the gradient of f (x, y, z) = x2 + y2 that defines
S3 as a level set.) Then∫

©
∫

∂ D
F · dS =

∫ ∫
S1

F · dS +
∫ ∫

S2

F · dS +
∫ ∫

S3

F · dS

=
∫ ∫

S1

(x i + y j + z k) · (−k) d S +
∫ ∫

S2

(x i + y j + z k) · k d S

+
∫ ∫

S3

(x i + y j + z k) ·
(

x i + y j

a

)
d S

=
∫ ∫

S1

−z d S +
∫ ∫

S2

z d S +
∫ ∫

S3

x2 + y2

a
d S

= 0 +
∫ ∫

S2

b d S +
∫ ∫

S3

a2

a
d S,

since along S1, z is 0; along S2, z is equal to b; and along S3, x2 + y2 = a2. Thus,∫
©
∫

∂ D
F · dS = b · area of S2 + a · area of S3 = bπa2 + a(2πab) = 3πa2b,

from familiar geometric formulas.
On the other hand,

∇ · F = ∂

∂x
(x) + ∂

∂y
(y) + ∂

∂z
(z) = 3,

so that ∫ ∫ ∫
D

∇ · F dV =
∫ ∫ ∫

D
3 dV = 3 · volume of D = 3πa2b,

which can be checked readily. ◆

In general, if F = x i + y j + z k and D is a region to which Gauss’s theorem
applies, then∫

©
∫

∂ D
F · dS =

∫ ∫ ∫
D

∇ · F dV =
∫ ∫ ∫

D
3 dV = 3 · volume of D.

Hence,

1
3

∫
©
∫

∂ D
(x i + y j + z k) · dS = volume of D.

∫∫
∂D

F · dS = b

∫∫
S2

dS + a

∫∫
S3

dS = 3πa2b.

On the other hand, ∇ · F = 3.
Then∫∫

∂D
F · dS =

∫∫∫
D
∇ · F dV = 3

∫∫∫
D
dV = 3πa2b.
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Calculating volume

Recall how we used Green’s theorem to calculate the area of a
plane region via a line integral around its boundary.

Theorem
Suppose D is a solid region in R3 to which Gauss’ theorem
applies and F is a C1 vector field such that ∇ · F is identically
1 on D. Then the volume of D is given by∫∫

∂D
F · dS

where ∂D is oriented as in Gauss’ theorem.

Some examples are

Volume of D =


∫∫
∂D

(x i) · dS∫∫
∂D

(y j) · dS∫∫
∂D

(z k) · dS
.
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Example

Let’s calculate the volume of a truncated cone via an integral
over its surface. Let D be the solid bounded by the cone

x2 + y2 = (2− z)2

and the planes z = 1 and z = 0. Let’s use the vector field
F = x i, so that

∫∫
S F · dS = 0 when S is the top or bottom

face. Then we just need to calculate

N =

∣∣∣∣∣∣
i j k

cos θ sin θ −1
−r sin θ r cos θ 0

∣∣∣∣∣∣ = x i+ y j+ r k

and the volume of D is∫∫
S
(x i) · dS =

∫ 2π

0

∫ 2

1
(r cos θ)2 dr dθ = 7

3π.
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