Math 240

Solving Linear Systems

Gauss-Jordan elimination Rank

Inverse

matrices

Definition

Computing inverses

Properties of inverses

Using inverse matrices

Solving Linear Systems, Continued and The Inverse of a Matrix

Math 240 — Calculus III

Summer 2015, Session II

Tuesday, July 7, 2015

Math 240

Solving Linear Systems

Gauss-Jorda elimination Rank

Inverse

matrices

Definition Computing

Properties o inverses

Using inverse matrices Conclusion Solving Linear Systems Gauss-Jordan elimination The rank of a matrix Agenda

2. The inverse of a square matrix Definition Computing inverses Properties of inverses Using inverse matrices Conclusion

Math 240

Solving Linear Systems

Gauss-Jordan elimination Rank

Inverse

matrices

Definition Computing inverses Properties of inverses

Using inverse matrices Conclusion

Gaussian elimination

$$3x_1 - 2x_2 + 2x_3 = 9$$

$$x_1 - 2x_2 + x_3 = 5 \rightsquigarrow \begin{bmatrix} 3 & -2 & 2 & 9 \\ 1 & -2 & 1 & 5 \\ 2x_1 - x_2 - 2x_3 = -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -2 & 1 & 5 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{x_1 - 2x_2 + x_3 = 5}$$

$$x_2 + 3x_3 = 5$$

$$x_3 = 2$$

Steps

1. P_{12} 3. $A_{13}(-2)$ 5. $A_{23}(-3)$ 2. $A_{12}(-3)$ 4. $A_{32}(-1)$ 6. $M_3\left(\frac{-1}{13}\right)$ Back substitution gives the solution (1, -1, 2).

8-2-5-8

Math 240

Solving Linear Systems

Gauss-Jordan elimination Rank

Inverse

matrices

Definition

Computing inverses

Properties o inverses

Using inverse matrices Conclusion

Gauss-Jordan elimination

Reducing the augmented matrix to RREF makes the system even easier to solve.

Example

$$\begin{bmatrix} 1 & -2 & 1 & 5 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\begin{subarray}{c} x_1 & = & 1 \\ \end{subarray}}_{X_2} x_2 = -1 \\ x_3 = & 2 \end{bmatrix}$$

Steps

1. $A_{32}(-3)$ 2. $A_{31}(-1)$ 3. $A_{21}(2)$

Now, without any back substitution, we can see that the solution is $(1,-1,2). \label{eq:solution}$

The method of solving a linear system by reducing its augmented matrix to RREF is called **Gauss-Jordan** elimination.

Math 240

Solving Linear Systems

Gauss-Jordan elimination

Rank

Inverse

matrices

Definition Computing

inverses

inverses

Osing inverse matrices Conclusion

Definition

The **rank** of a matrix, A, is the number of nonzero rows it has after reduction to REF. It is denoted by rank(A).

The rank of a matrix

If A is the coefficient matrix of an $m\times n$ linear system and ${\rm rank}(A^\#)={\rm rank}(A)=n$ then the REF looks like

$\begin{bmatrix} 1 & * & * & \cdots & * \\ 1 & * & \cdots & * \\ 1 & * & \cdots & * \\ \vdots \\ 0 & \ddots & \vdots \\ 0 & 1 & * \\ 0 & \cdots & 0 \end{bmatrix} \xrightarrow{x_1 = x} x_2 = x$

Lemma

Suppose $A\mathbf{x} = \mathbf{b}$ is an $m \times n$ linear system with augmented matrix $A^{\#}$. If $\operatorname{rank}(A^{\#}) = \operatorname{rank}(A) = n$ then the system has a unique solution.

Math 240

Solving Linear Systems

Gauss-Jordan elimination Bank

Malik

Inverse

matrices

Definition

Computing

Properties o

Using inverse matrices

Conclusion

Example

Determine the solution set of the linear system

$$\begin{aligned} x_1 + x_2 - x_3 + x_4 &= 1, \\ 2x_1 + 3x_2 + x_3 &= 4, \\ 3x_1 + 5x_2 + 3x_3 - x_4 &= 5. \end{aligned}$$

Reduce the augmented matrix.

$$\begin{bmatrix} 1 & 1 & -1 & 1 & 1 \\ 2 & 3 & 1 & 0 & 4 \\ 3 & 5 & 3 & -1 & 5 \end{bmatrix} \xrightarrow{A_{12}(-2)}_{A_{23}(-2)} \begin{bmatrix} 1 & 1 & -1 & 1 & 1 \\ 0 & 1 & 3 & -2 & 2 \\ 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

The last row says 0 = -2; the system is inconsistent.

Lemma

Suppose $A\mathbf{x} = \mathbf{b}$ is a linear system with augmented matrix $A^{\#}$. If $\operatorname{rank}(A^{\#}) > \operatorname{rank}(A)$ then the system is inconsistent.

The rank of a matrix

Math 240 Solving Linear

The rank of a matrix

Example

Gauss-Jordan elimination Bank

Капк

Inverse

matrices

Definition

Computing

inverses Properties o

Using inverse matrices

Determine the solution set of the linear system

 $5x_1 - 6x_2 + x_3 = 4,$ $2x_1 - 3x_2 + x_3 = 1,$ $4x_1 - 3x_2 - x_3 = 5.$

Reduce the augmented matrix.

$$\begin{bmatrix} 5 & -6 & 1 & 4 \\ 2 & -3 & 1 & 1 \\ 4 & -3 & -1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightsquigarrow \begin{array}{c} x_1 & -x_3 = 2 \\ x_2 - x_3 = 1 \end{array}$$

The unknown x_3 can assume any value. Let $x_3 = t$. Then by back substitution we get $x_2 = t + 1$ and $x_1 = t + 2$. Thus, the solution set is the line

$$\{(t+2,t+1,t):t\in\mathbb{R}\}.$$

Math 240

Solving Linear Systems

Gauss-Jordan elimination Bank

Inverse

Definition Computing inverses Properties of

inverses Using inverse matrices

Conclusion

Definition

When an unknown variable in a linear system is free to assume any value, we call it a **free variable**. Variables that are not free are called **bound variables**.

The value of a bound variable is uniquely determined by a choice of values for all of the free variables in the system.

Lemma

Suppose $A\mathbf{x} = \mathbf{b}$ is an $m \times n$ linear system with augmented matrix $A^{\#}$. If $\operatorname{rank}(A^{\#}) = \operatorname{rank}(A) < n$ then the system has an infinite number of solutions. Such a system will have $n - \operatorname{rank}(A)$ free variables.

The rank of a matrix

Math 240

Solving Linear Systems

Gauss-Jordan elimination

Rank

Inverse

matrices

Definition

Computing inverses

Properties o

Using inverse matrices Conclusion

Solving linear systems with free variables

Example

Use Gaussian elimination to solve

Reducing to row-echelon form yields

$$\begin{aligned} x_1 + 2x_2 - 2x_3 - x_4 &= 3, \\ x_3 + 2x_4 &= 1. \end{aligned}$$

Choose as free variables those variables that **do not** have a pivot in their column.

In this case, our free variables will be x_2 and x_4 . The solution set is the plane

$$\{(5 - 2s - 3t, s, 1 - 2t, t) : s, t \in \mathbb{R}\}\$$

Math 240

Solving Linear Systems

Gauss-Jordar elimination Rank

Inverse

matrices

Definition

Computing inverses Properties of inverses

matrices Conclusion

Can we divide by a matrix? What properties should the inverse matrix have?

Definition

Suppose A is a square, $n\times n$ matrix. An **inverse matrix** for A is an $n\times n$ matrix, B, such that

$$AB = I_n$$
 and $BA = I_n$.

If A has such an inverse then we say that it is **invertible** or **nonsingular**. Otherwise, we say that A is **singular**.

Remark

Not every matrix is invertible.

If you have a linear system $A\mathbf{x} = \mathbf{b}$ and B is an inverse matrix for A then the linear system has the unique solution

$$\mathbf{x} = B\mathbf{b}.$$

Math 240

Solving Linear Systems

Gauss-Jorda elimination Rank

Inverse

matrices

Definition

Computing inverses

Properties o inverses

Conclusion

Example

lf

$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -3 & 3 \\ 1 & -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -1 & 3 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} = A^{-1}$

The inverse of a square matrix

then B is *the* inverse of A.

Theorem (Matrix inverses are well-defined)

Suppose A is an $n \times n$ matrix. If B and C are two inverses of A then B = C.

Thus, we can write A^{-1} for *the* inverse of A with no ambiguity.

Useful Example

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $ad - bc \neq 0$ then $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Math 240

Solving Linear Systems

Gauss-Jorda elimination Rank

Inverse

matrices

Definition Computing

inverses Proportion

Using inverse

matrices Conclusion

Finding the inverse of a matrix

Inverse matrices sound great! How do I find one? Suppose A is a 3×3 invertible matrix. If $A^{-1} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$ then

$$A\mathbf{x}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \ A\mathbf{x}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \text{ and } A\mathbf{x}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

We can find A^{-1} by solving 3 linear systems at once!

In general, form the augmented matrix and reduce to RREF. You end up with A^{-1} on the right.

$$egin{bmatrix} A \, ig | \, I_n \end{bmatrix} \ \leadsto \ ig [I_n ig | \, A^{\scriptscriptstyle -1} ig]$$

Math 240

Solving Linear Systems

Gauss-Jorda elimination Rank

Inverse

matrices

Definition Computing

inverses

Properties of inverses Using inverse matrices

Conclusion

Example

Let's find the inverse of
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -3 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$
.

Take the augmented matrix and row reduce.

 $\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 2 & -3 & 3 & | & 0 & 1 & 0 \\ 1 & -1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & | & 0 & -1 & 3 \\ 0 & 1 & 0 & | & 1 & -1 & 1 \\ 0 & 0 & 1 & | & \underbrace{1 & 0 & -1}_{A^{-1}} \end{bmatrix}$

Steps

- 1. $A_{12}(-2)$ 2. $A_{13}(-1)$
- 3. $M_2(-1)$
- 4. $M_3(-1)$

5. $A_{32}(-1)$ 6. $A_{31}(-2)$ 7. $A_{21}(1)$

Finding the inverse of a matrix

Math 240

Solving Linear Systems

Gauss-Jorda elimination Rank

Inverse

matrices

Definition

Computing inverses

Properties of inverses

Conclusion

Finding the inverse of a matrix

In order to find the inverse of a matrix, A, we row reduced an augmented matrix with A on the left. What if we don't end up with I_n on the left?

Theorem

An $n \times n$ matrix, A, is invertible if and only if rank(A) = n.

Example

Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
.

Try to reduce the matrix to RREF.

$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \xrightarrow{A_{12}(-2)} \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$$

Since $\operatorname{rank}(A) < 2$, we conclude that A is not invertible. Notice that (1)(6) - (3)(2) = 0.

Math 240

Solving Linear Systems

Gauss-Jordar elimination Rank

Inverse

matrices

Computing

Properties of inverses

Using inverse matrices Conclusion

Proposition

The inverse of a diagonal matrix is the diagonal matrix with reciprocal entries.

Finding the inverse of a matrix

$$\begin{bmatrix} a_{11} & & \\ 0 & \ddots & \\ 0 & & a_{nn} \end{bmatrix}^{-1} = \begin{bmatrix} a_{11}^{-1} & & \\ 0 & \ddots & \\ 0 & & a_{nn}^{-1} \end{bmatrix}$$

Upper and lower triangular matrices have inverses of the same form.

Proposition

The inverse of an upper triangular matrix is upper triangular. The inverse of a lower triangular matrix is lower triangular.

Math 240

Solving Linear Systems

Gauss-Jorda elimination Rank

Inverse

matrices

Definition

Computing inverses

Properties of inverses

Using inverse matrices Conclusion

Suppose A and B are $n \times n$ invertible matrices.

- A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Corollary

Suppose A_1, A_2, \ldots, A_k are invertible $n \times n$ matrices. Then their product, $A_1A_2 \cdots A_k$ is invertible, and

$$(A_1 A_2 \cdots A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} \cdots A_1^{-1}.$$

Properties of inverse matrices

Math 240

Solving Linear Systems

Gauss-Jorda elimination Rank

Inverse

matrices

Definition

Computing

Properties of inverses

Using inverse matrices Recall that if A is an invertible matrix then the linear system $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Example

Solve the linear system

The coefficient matrix is
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
, so $A^{-1} = \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix}$.

The inverse of a 2×2 matrix is

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \text{ when } ad - bc \neq 0.$$

Hence,
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}.$$

Using inverse matrices

Math 240

Solving Linear Systems

Gauss-Jordar elimination Rank

Inverse

matrices

- Definition
- Computing inverses
- Properties of inverses
- Using inverse matrices

Conclusion

Conclusion

- They are only applicable when the coefficient matrix is square.
- Even in the case of a square matrix, an inverse may not exist.
- They are hard to compute, at least as complicated as doing Gauss-Jordan elimination.

However, they can be useful if

- the coefficient matrix has an obvious inverse,
- you need to solve multiple linear systems with the same coefficients.

