1. Integrating factors

2. Reduction of order
The reduction of order technique, which applies to second-order linear differential equations, allows us to go beyond equations with constant coefficients, provided that we already know one solution.

If our differential equation is

\[y'' + a_1(x)y' + a_2(x)y = F(x), \]

and we know the solution, \(y_1(x) \), to the associated homogeneous equation, this method will furnish us with another, independent solution.

To accomplish the process, we will make use of *integrating factors*.
Integrating factors are a technique for solving first-order linear differential equations, that is, equations of the form

\[a(x) \frac{dy}{dx} + b(x)y = r(x). \]

Assuming \(a(x) \neq 0 \), we can divide by \(a(x) \) to put the equation in standard form:

\[\frac{dy}{dx} + p(x)y = q(x). \]

The main idea is that the left-hand side looks almost like the result of the product rule for derivatives. If \(I(x) \) is another function then

\[\frac{d}{dx}(Iy) = I \frac{dy}{dx} + \frac{dI}{dx}y. \]

The standard form equation is missing an \(I \) in front of \(\frac{dy}{dx} \), so let’s multiply it by \(I \).
When we multiply our equation by I, we get

$$I \frac{dy}{dx} + Ip(x)y = Iq(x),$$

so in order for the left-hand side to be $\frac{d}{dx}(Iy)$, we need to have

$$\frac{dI}{dx} = p(x)I.$$

Rearranging this into

$$\frac{dI}{I} = p(x) \, dx,$$

we can solve:

$$I(x) = c_1 e^{\int p(x) \, dx}.$$

Since we only need one function I, let’s set $c_1 = 1$.
Using this I, we rewrite our equation as

$$\frac{d}{dx}(Iy) = q(x)I,$$

then integrate and divide by I to get

$$y(x) = \frac{1}{I} \left(\int q(x)I \, dx + c \right).$$

Our I is called an **integrating factor** because it is something we can multiply by (a factor) that allows us to integrate.
Example

Find a solution to

\[y' + xy = xe^{x^2/2}. \]

1. Find the integrating factor

\[I(x) = e^{\int x \, dx} = e^{x^2/2}. \]

2. Multiply it into the original equation:

\[\frac{d}{dx} \left(e^{x^2/2} y \right) = e^{x^2/2} y' + xe^{x^2/2} y = xe^{x^2}. \]

3. Integrate both sides:

\[e^{x^2/2} y = \frac{1}{2} e^{x^2} + c. \]

4. Divide by \(I \) to find the solution

\[y(x) = e^{-x^2/2} \left(\frac{1}{2} e^{x^2} + c \right). \]
Example

Solve, for $x > 0$, the equation

$$xy' + 2y = \cos x.$$

1. Write the equation in standard form:

$$y' + \frac{2}{x} y = \frac{\cos x}{x}.$$

2. An integrating factor is

$$I(x) = e^{2 \ln x} = x^2.$$

3. Multiply by I to get

$$\frac{d}{dx}(x^2 y) = x \cos x.$$

4. Integrate and divide by x^2 to get

$$y(x) = \frac{x \sin x + \cos x + c}{x^2}.$$
We now turn to second-order equations

\[y'' + a_1(x)y' + a_2(x)y = F(x). \]

We know that the general solution to such an equation will look like

\[y(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x). \]

Suppose that we know \(y_1(x) \). We will guess the solution \(y(x) = u(x)y_1(x) \). Plugging it into our original equation yields

\[u''y_1 + u'(2y'_1 + a_1(x)y_1) = F(x). \]

If we let \(w = u' \) then we have reduced our second-order equation to the first-order

\[w' + \left(\frac{2y'_1}{y_1} + a_1 \right) w = \frac{F(x)}{y_1}. \]
We may solve
\[w' + \left(\frac{2y_1'}{y_1} + a_1 \right) w = \frac{F(x)}{y_1} \]
using the integrating factor technique:
\[I(x) = y_1^2(x)e^{\int^x a_1(s) \, ds} \]
and
\[w(x) = \frac{1}{I(x)} \int^x \frac{I(s)F(s)}{y_1(s)} \, ds + \frac{c_1}{I(x)}. \]

Then integrate \(w \) to find \(u \):
\[u(x) = \int^x \frac{1}{I(t)} \int^t \frac{I(s)F(s)}{y_1(s)} \, ds \, dt + c_1 \int^x \frac{1}{I(s)} \, ds + c_2. \]
Finally, we get

\[y(x) = u(x)y_1(x) = c_1y_1(x) \int^x \frac{1}{I(s)} \, ds + c_2y_1(x) \]

\[+ y_1(x) \int^x \frac{1}{I(t)} \int^t \frac{I(s)F(s)}{y_1(s)} \, ds \, dt. \]

Using \(F = 0 \) gives us the two fundamental solutions

\[y(x) = y_1(x) \text{ and } y(x) = y_1(x) \int^x \frac{1}{I(s)} \, ds. \]

And using \(c_1 = c_2 = 0 \), we get a particular solution

\[y_p(x) = y_1(x) \int^x \frac{1}{I(t)} \int^t \frac{I(s)F(s)}{y_1(s)} \, ds \, dt. \]
Example

Determine the general solution to

\[xy'' - 2y' + (2 - x)y = 0, \quad x > 0, \]
given that one solution is \(y_1(x) = e^x \).

1. Set up the equation for \(w \):

\[w' + \frac{2(x - 1)}{x} w = 0. \]

2. Solve for \(w \):

\[w(x) = c_1 x^2 e^{-2x}. \]

3. Integrate to find

\[u(x) = \int w(x) \, dx + c_2 = -\frac{1}{4} c_1 e^{-2x}(1 + 2x + 2x^2) + c_2. \]

4. Multiply by \(y_1 \) for the general solution:

\[y(x) = c_1 e^{-x}(1 + 2x + 2x^2) + c_2 e^x. \]
Example

Determine the general solution to

\[x^2 y'' + 3xy' + y = 4 \ln x, \quad x > 0, \]

by first finding solutions to the associated homogeneous equation of the form \(y(x) = x^r \).

1. Find \(y_1(x) = x^{-1} \).
2. Put the equation in standard form by dividing by \(x^2 \):
 \[y'' + 3x^{-1}y' + x^{-2}y = 4x^{-2} \ln x. \]
3. Set up the equation \(w' + x^{-1}w = 4x^{-1} \ln x. \)
4. Find \(w(x) = 4(\ln x - 1) + c_1 x^{-1} \).
5. Then \(u(x) = 4x(\ln x - 2) + c_1 \ln x + c_2. \)
6. Multiply by \(y_1(x) = x^{-1} \):
 \[y(x) = 4(\ln x - 2) + c_1 x^{-1} \ln x + c_2 x^{-1}. \]