MATH 360 — HOMEWORK 7.

due on Friday, October 25

by J. E. Marsden and M. J. Hoffman

Additional Reading: “Foundations of Modern Analysis”
by J. Dieudonné

Topics:
• The Topology of Euclidean Space
 – 2.9 Series of Real Numbers and Vectors
• Compact and Connected Sets
 – 3.1 Compactness

Seventh Homework Assignment.

Reading:
• Read Sections 2.9 and 3.1 paying attention to all the examples. Read your notes.

Exercises:

Problem 1. Prove that if d_1 and d_2 are equivalent metrics on M and T is a subset of M, then T is totally bounded in (M, d_1) if and only if it is totally bounded in (M, d_2).

Problem 2. Prove that a subset T in the metric space (M, d) is totally bounded if and only if for every $\varepsilon > 0$ there exist $x_1, \ldots, x_N \in T$ such that

$$T \subset \bigcup_{i=1}^{N} D(x_i, \varepsilon).$$

(The important difference is that the centers of the discs are in T.)

Problem 3. Prove that if T is totally bounded in (M, d), then \overline{T} (the closure of T) is totally bounded too.

• Page 149: problems: 52, 53
• Page 155: problems: 1, 4
• Page 172: problems: 5, 7, 30

The topics and page numbers are from the textbook.