MATH 361 — HOMEWORK 10.

due on Friday, April 17.

by J. E. Marsden and M. J. Hoffman

Topics:
• Chapter 6: Differentiable Mappings
 – 6.1 Definition of the Derivative
 – 6.2 Matrix Representation
 – 6.3 Continuity of Differentiable Mappings; Differentiable Paths
 – 6.4 Conditions for Differentiability
 – 6.5 The Chain Rule
 – 6.6 Product Rules and Gradients
 – 6.7 The Mean Value Theorem
• Differentiability of Multilinear Maps and Inverses. Operations on Functions (The Lectures)
• Higher Derivatives (The Lectures)

Tenth Homework Assignment.

Reading:
• Read the slides (or/and watch the videos).

Exercises: (In what follows E and F are Banach Spaces).

Problem 1. Compute the second derivative of a continuous map $T \in L(E, F)$.

Problem 2. Prove that every continuous k–linear map $\phi \in L^{(k)}(E_1 \times \cdots \times E_k; F)$ is twice differentiable and compute its second derivative. What about higher derivatives?

Problem 3. Prove that the inverse map $\text{Inv} : \text{GL}(E) \to L(E)$ is twice differentiable and compute its second derivative. What about higher derivatives?

Problem 4. Prove that the determinant map $\det : M_N(\mathbb{R}) \to \mathbb{R}$ is differentiable, and prove that $D\det(I_N) = Tr$. (I_N is the identity matrix and Tr is the trace.).

Can you see what the derivative of the determinant is at a general point $A \in M_N(\mathbb{R})$?
Problem 5. Suppose that \(U \subset E \) is an open set and that \(f : U \to F \) is \(n \)-times differentiable. Suppose \(x \in U \) and \(h \in E \) and consider the function
\[
\varphi(t) = f(x + th)
\]
defined for all values of \(t \in \mathbb{R} \) for which \(x + th \in U \). Prove that the domain of definition of \(\varphi \) is an open set, that \(\varphi \) is \(n \)-times differentiable and that
\[
\frac{d^n \varphi}{dt^n}(t) = D^n f(x + th)(h, h, \ldots, h).
\]

Problems: (These are from the book. I wrote them here for the benefit of those who do not have the textbook handy!)

Problem 6. (Page 338-5) Find the tangent vector to the curve \(c(t) = (3t^2, e^t, t + t^2) \) at the point corresponding to \(t = 1 \).

Problem 7. (Page 344-4) Find the equation of the tangent plane to \(z = x^3 + y^4 \) at \(x = 1, y = 3 \).

Problem 8. (Page 362-1) Verify the equality of the mixed partials for \(f(x, y) = (e^{x^2+y^2})xy^2 \).

Problem 9. (Page 362-5) Compute the first and second derivatives for \(f(x, y) = e^x \cos y \) at the point \((0,0)\).

Problem 10. (Page 388-31) Let \((K,d)\) be a compact metric space and consider the Banach space \((C(K,\mathbb{R}), \|\|_{\infty})\). Define for \(x_0 \in K, \delta_{x_0} : C(K,\mathbb{R}) \to \mathbb{R}; f \mapsto f(x_0) \). Prove that \(\delta_{x_0} \) is differentiable.

Problem 11. (Page 388-32) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by
\[
f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}
\]
if \((x, y) \neq (0,0)\) and \(f(0,0) = 0 \). Show that \(\partial^2 f / \partial x \partial y \) and \(\partial^2 f / \partial y \partial x \) exist at \((0,0)\) but are not equal.