Topology

Let (X, d) be a metric space. A ball centered at $x \in X$ of radius r > 0 is the subset $B(x, r) = \{x' \in X : d(x, x') < r\}$.

If S is a subset of X, then a point $x \in X$ is an *interior point* of S if there exists r > 0 such that the ball B(x,r) is completely contained in S. The set of all interior points of S is called the *interior* of S and is denoted by \mathring{S} .

A point $x \in X$ is a *limit point* of S if every ball centered at x intersects the set $S - \{x\}$. The set S together with all its limit points forms the *closure* of S which is denoted by \overline{S} .

A subset S of X is called *open* if $S = \mathring{S}$. A subset S of X is called *closed* if $S = \overline{S}$.

Proposition. Let (X, d) be a metric space. Then every ball B(x, r) is an open subset of X.

Proposition. Let (X, d) be a metric space and let S be a subset of X. The following statements are equivalent:

- S is open
- S^c is closed
- every point of S is an interior point of S
- S is the union of a (possibly empty) collection of balls

Proposition. Let (X, d) be a metric space and let S be a subset of X. The following statements are equivalent:

- S is closed
- S^c is open
- S contains all its limit points

Proposition. Any union of open sets is an open set. A finite intersection of open sets is an open set.

Proposition. Any intersection of closed sets is a closed set. A finite union of closed sets is a closed set.

We can characterize the interior and the closure of a subset S of X in the following way:

- \mathring{S} is the union of all open subsets of S (i.e. the largest open subset of S)
- \overline{S} is the intersection of all closed subsets of X which contain S (i.e. the smallest closed superset of S)

Let (X, d) be a metric space. The distance between a point $x \in X$ and a non-empty subset $S \subseteq X$ is defined by

$$d(x,S) := \inf\{d(x,s) : s \in S\}$$

Let S be a proper subset of X which has more than one element. The following statements hold:

- $x \in \mathring{S} \Leftrightarrow d(x, S^c) > 0$
- $x \in \bar{S} \Leftrightarrow d(x, S) = 0$
- x is a limit point of $S \Leftrightarrow d(x, S \{x\}) = 0$
- $x \in S$ is an isolated point of $S \Leftrightarrow d(x, S \{x\}) > 0$