Continuity

1. Let $x_{0} \in \mathbb{R}$ be a real number. Check if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by the rule

$$
f(x)= \begin{cases}\frac{1}{x} & \text { if } x \neq 0 \\ x_{0} & \text { if } x=0\end{cases}
$$

is continuous.
2. Check if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by the rule

$$
f(x)= \begin{cases}x \cdot \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is continuous.
3. Check if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by the rule

$$
f(x)= \begin{cases}\sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is continuous.
4. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous at every real number.
5. Show that if a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and periodic, then it attains its supremum and infimum.
6. Let f and g be continuous functions defined on $S \subseteq \mathbb{R}$. Show that the function $\max \{f, g\}: S \rightarrow \mathbb{R}$ defined by the rule

$$
\max \{f, g\}(x):=\max \{f(x), g(x)\}
$$

is also continuous.
7. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Prove that there exists a fixed point $x \in[0,1]$ of f, which means that $f(x)=x$.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial of odd degree. Show that there exists $x \in \mathbb{R}$ such that $f(x)=0$.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. If $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence, does $\left\{f\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ have to be a Cauchy sequence? What if we have a function $f:\langle 0,1\rangle \rightarrow \mathbb{R}$ instead?
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies $f(x+y)=f(x)+f(y)$ for every $x, y \in \mathbb{R}$. Show that the function f has to be of the form $f(x)=a x$ for some $a \in \mathbb{R}$.
11. Investigate which continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the equality $f(|z|)=f(\operatorname{Re} z)+f(\operatorname{Im} z)$ for every $z \in \mathbb{C}$.

