Extra problems

1. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by the rule $f(x)=|x| \sin x$. Show that f is differentiable on \mathbb{R} and that its first derivative is a continuous function. Is f twice differentiable?
2. (a) Let $f_{n}:[-1,1] \rightarrow \mathbb{R}$ be the sequence of functions $f_{n}(x)=\cos \frac{x}{n}$. Does the sequence f_{n} converge uniformly? (b) Let $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the sequence of functions $g_{n}(x)=\cos \frac{x}{n}$. Does the sequence g_{n} converge uniformly?
3. The curves y_{1}, y_{2}, and y_{3} in the graph below are the graphs af a function f and its first and second derivatives. Which curve is the graph f, which one is the graph of f^{\prime}, and which one is the graph of $f^{\prime \prime}$? Justify your answer.

Sketch the graph of the antiderivative $g(x)=\int_{0}^{x} f(t) d t$ of the function f.
4. Let $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. For $n \in \mathbb{N}$ we define the sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ recursively:

$$
f_{n}(x):=\int_{0}^{x} f_{n-1}(t) d t
$$

Assume that the sequence of functions f_{n} converges uniformly to a function f. Show that $f(x)=0$ for every $x \in \mathbb{R}$.
5. Let the function $f:[0,1] \rightarrow \mathbb{R}$ be defined by the following rule:

$$
f(x)= \begin{cases}1 & \text { if } x \in\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is integrable.
6. Let the function $f:[0,1] \rightarrow \mathbb{R}$ be defined by the following rule:

$$
f(x)= \begin{cases}\sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f is integrable.
7. For which values of a does the series $1+\sin x+\sin x^{2}+\sin x^{3}+\sin x^{4}+\cdots$ converge uniformly on $[-a, a]$?
8. (a) Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of functions which coverges uniformly to $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be any function. Show that the sequence $f_{n} \circ g: \mathbb{R} \rightarrow \mathbb{R}$ converges uniformly.
(b) For which values of a does the series $1+\sin x+\sin ^{2} x+\sin ^{3} x+\sin ^{4} x+\cdots$ converge uniformly on $[-a, a]$?
9. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly convergent sequence of continuous functions and let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a convergent sequence of real numbers. Show that the sequence of real numbers $\left\{f_{n}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ converges. Does the converse hold?
10. Show that the conclusion of the previous problem does not hold if we only assume that the sequence $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ converges pointwise.

