The real numbers have two structures which we need in order to define the limit superior and limit inferior of a sequence:

- \mathbb{R} has a metric which enables us to talk about convergence of sequences and continuity of functions
- \mathbb{R} has an order which enables us to compare different real numbers

However, limit superior and limit inferior can attain infinite values so their codomain should be a set bigger than \mathbb{R} :

$$
\liminf : \mathbb{R}^{\mathbb{N}} \rightarrow[-\infty,+\infty] \quad \lim \sup : \mathbb{R}^{\mathbb{N}} \rightarrow[-\infty,+\infty]
$$

The set $[-\infty,+\infty]$ is the set consisting of all real numbers together with two extra elements $\pm \infty$. We have to introduce the structures on this set which parallel the ones we have on \mathbb{R}. The metric on the set $[-\infty,+\infty]$ can be defined using the formula:

$$
d(x, y)=|\arctan y-\arctan x|
$$

To introduce the order we only need to define the comparison of $\pm \infty$ with other elements. We set $+\infty$ to be the maximum of $[-\infty,+\infty]$ and $-\infty$ to be the minimum of $[-\infty,+\infty]$. This order has the property that any nonempty subset of $[-\infty,+\infty]$ has the supremum and infimum. Moreover, the map

$$
\tan :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-\infty,+\infty]
$$

is a bijective isometry, so the metric space $[-\infty,+\infty]$ is compact. Hence, any sequence of elements in $[-\infty,+\infty]$ has a convergent subsequence. Given a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of elements of $[-\infty,+\infty]$, let Λ be the set of all the limits of convergent subsequences of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$. Since $[-\infty,+\infty]$ is compact, Λ is nonempty so it has a supremum and infimum in $[-\infty,+\infty]$. We define:

$$
\liminf _{n \rightarrow \infty} x_{n}:=\inf \Lambda \quad \quad \limsup _{n \rightarrow \infty} x_{n}:=\sup \Lambda
$$

Note that the set \mathbb{R} is a subset of $[-\infty,+\infty]$ and hence it inherits the metric d. The usual metric space \mathbb{R} with the distance given by $|y-x|$ and the metric space (\mathbb{R}, d) have the same open sets. This means that any sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ which converges to $x_{0} \in \mathbb{R}$ in the usual sense, also converges to x_{0} in (\mathbb{R}, d) and vice versa.

Some important properties:

- $\liminf _{n \rightarrow \infty} x_{n} \leq \lim \sup _{n \rightarrow \infty} x_{n}$ and the equality holds if and only if the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges.
- If the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges, then its limit inferior and limit superior both equal to $\lim _{n \rightarrow \infty} x_{n}$.
- If the inequality $x_{n} \leq y_{n}$ holds for all but finitely many indices $n \in \mathbb{N}$, then
$-\lim \sup _{n \rightarrow \infty} x_{n} \leq \lim \sup _{n \rightarrow \infty} y_{n}$
$-\liminf _{n \rightarrow \infty} x_{n} \leq \liminf _{n \rightarrow \infty} y_{n}$
- The following inequalities are true unless the expressions of the form $\pm \infty \mp \infty$ crop up:
$-\lim \sup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \lim \sup _{n \rightarrow \infty} x_{n}+\lim \sup _{n \rightarrow \infty} y_{n}$
$-\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq \liminf _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n}$
- If $\lambda \leq x_{n}$ holds only for finitely many indices $n \in \mathbb{N}$, then $\limsup _{n \rightarrow \infty} x_{n} \leq \lambda$.
- If $\lambda \geq x_{n}$ holds only for finitely many indices $n \in \mathbb{N}$, then $\liminf _{n \rightarrow \infty} x_{n} \geq \lambda$.
- We have the following formulas:

$$
-\lim \sup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sup \left\{x_{k}: k \geq n\right\}
$$

$$
-\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \inf \left\{x_{k}: k \geq n\right\}
$$

