Sequences and series

- 1. Show that if the sequence of real or complex numbers $\{x_n\}_{n\in\mathbb{N}}$ converges, than the sequence $\{|x_n|\}_{n\in\mathbb{N}}$ also converges.
- 2. Show that if the sequence of vectors $\{x_n\}_{n\in\mathbb{N}}$ converges, than the sequence $\{\|x_n\|\}_{n\in\mathbb{N}}$ also converges.
- 3. Let $\{x_n\}_{n\in\mathbb{N}}$ be a convergent sequence of real numbers. Show that the sequence $\{|x_{n+1} x_n|\}_{n\in\mathbb{N}}$ is also convergent.
- 4. For which complex numbers $z \in \mathbb{C}$ does the sequence $\{z^n\}_{n \in \mathbb{N}}$ converge? What are the possible limits?
- 5. Let $\{x_n\}_{n\in\mathbb{N}}$ be an enumeration of the set of rational numbers \mathbb{Q} . Describe the set of limits of all convergent subsequences of $\{x_n\}_{n\in\mathbb{N}}$ in \mathbb{R} .
- 6. Let $\{x_n\}_{n\in\mathbb{N}}$ be a convergent sequence in a metric space (X, d). Show that the set $\{x_n : n \in \mathbb{N}\}$ is bounded.
- 7. Let S be a subset of the metric space (X, d). Prove that $x \in X$ is inside the closure of S if and only if there is a sequence $\{s_n\}_{n \in \mathbb{N}}$ of elements of S such that $x = \lim_{n \to \infty} s_n$.
- 8. Show that a subset S of a metric space (X, d) is closed if and only if every convergent sequence $\{s_n\}_{n \in \mathbb{N}}$ of elements of S has its limit in S.
- 9. Let (X, d) be a metric space with discrete metric. Which sequences in (X, d) are convergent?
- 10. Let $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ be Cauchy sequences in a metric space (X, d). Show that the sequence $\{d(x_n, y_n)\}_{n\in\mathbb{N}}$ of real numbers is convergent.
- 11. Give an example of a metric space (X, d) and a Cauchy sequence in (X, d) which is not convergent.
- 12. Let $\{x_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence. Show that $\lim_{n\to\infty} |x_{n+1} x_n| = 0$. Does the converse hold?
- 13. Find a collection of real numbers $a_{mn} \in \mathbb{R}$ where $m, n \in \mathbb{N}$ such that the following are all true:
 - For every $m \in \mathbb{N}$, the sequence $\{a_{mn}\}_{n \in \mathbb{N}}$ is convergent. The sequence $\{\lim_{n \to \infty} a_{mn}\}_{m \in \mathbb{N}}$ is convergent.
 - For every $n \in \mathbb{N}$, the sequence $\{a_{mn}\}_{m \in \mathbb{N}}$ is convergent. The sequence $\{\lim_{m \to \infty} a_{mn}\}_{n \in \mathbb{N}}$ is convergent.
 - We have $\lim_{m \to \infty} \lim_{n \to \infty} a_{mn} \neq \lim_{n \to \infty} \lim_{m \to \infty} a_{mn}$.
- 14. Let $\{x_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers. Does the sequence $\{\frac{1}{n}\sum_{k=1}^n x_k\}_{n\in\mathbb{N}}$ have to converge?
- 15. Let x be a real number. Does the sequence $\frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor nx \rfloor}{n^2}$ converge?
- 16. Does the series $\sum_{n=0}^{\infty} e^{in}$ converge?
- 17. Suppose that $\sum_{n=1}^{\infty} x_n$ is a series of positive real numbers which is convergent. Show that the following series are convergent:
 - $\sum_{n=1}^{\infty} x_n^2$ • $\sum_{n=1}^{\infty} \sqrt{x_n \cdot x_{n+1}}$ • $\sum_{n=1}^{\infty} \frac{1}{n} \sqrt{x_n}$
- 18. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence such that the subsequences $\{x_{2k}\}_{k\in\mathbb{N}}$, $\{x_{2k+1}\}_{k\in\mathbb{N}}$, and $\{x_{3k}\}_{k\in\mathbb{N}}$ are all convergent. Show that $\{x_n\}_{n\in\mathbb{N}}$ is convergent.
- 19. Suppose that $\sum_{n=1}^{\infty} x_n$ is a series of positive real numbers which is convergent. Show that $\sum_{n=1}^{\infty} \frac{1}{x_n}$ is divergent. Does the converse hold?
- 20. Does there exist a sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers such that $\sum_{n=1}^{\infty} x_n^m = m$ for every $m \in \mathbb{N}$?
- 21. Find the limit superior and the limit inferior of the sequence $\left\{1 + (-1)^n + \frac{1}{n}\right\}_{n \in \mathbb{N}}$.
- 22. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Assume that $\{x_{n_k}\}_{k\in\mathbb{N}}$ and $\{x_{m_k}\}_{k\in\mathbb{N}}$ are two subsequences whose combined indices cover the entire set \mathbb{N} . Show the equality:

$$\limsup_{n \to \infty} x_n = \max \left\{ \limsup_{k \to \infty} x_{n_k}, \limsup_{k \to \infty} x_{m_k} \right\}$$

What happens if the two subsequences converge to the same number? What if we have three or more subsequences? What if we have infinitely many subsequences?