1. Show that if the sequence of real or complex numbers $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges, than the sequence $\left\{\left|x_{n}\right|\right\}_{n \in \mathbb{N}}$ also converges.
2. Show that if the sequence of vectors $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges, than the sequence $\left\{\left\|x_{n}\right\|\right\}_{n \in \mathbb{N}}$ also converges.
3. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a convergent sequence of real numbers. Show that the sequence $\left\{\left|x_{n+1}-x_{n}\right|\right\}_{n \in \mathbb{N}}$ is also convergent.
4. For which complex numbers $z \in \mathbb{C}$ does the sequence $\left\{z^{n}\right\}_{n \in \mathbb{N}}$ converge? What are the possible limits?
5. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be an enumeration of the set of rational numbers \mathbb{Q}. Describe the set of limits of all convergent subsequences of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in \mathbb{R}.
6. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a convergent sequence in a metric space (X, d). Show that the set $\left\{x_{n}: n \in \mathbb{N}\right\}$ is bounded.
7. Let S be a subset of the metric space (X, d). Prove that $x \in X$ is inside the closure of S if and only if there is a sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ of elements of S such that $x=\lim _{n \rightarrow \infty} s_{n}$.
8. Show that a subset S of a metric space (X, d) is closed if and only if every convergent sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ of elements of S has its limit in S.
9. Let (X, d) be a metric space with discrete metric. Which sequences in (X, d) are convergent?
10. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be Cauchy sequences in a metric space (X, d). Show that the sequence $\left\{d\left(x_{n}, y_{n}\right)\right\}_{n \in \mathbb{N}}$ of real numbers is convergent.
11. Give an example of a metric space (X, d) and a Cauchy sequence in (X, d) which is not convergent.
12. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence. Show that $\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|=0$. Does the converse hold?
13. Find a collection of real numbers $a_{m n} \in \mathbb{R}$ where $m, n \in \mathbb{N}$ such that the following are all true:

- For every $m \in \mathbb{N}$, the sequence $\left\{a_{m n}\right\}_{n \in \mathbb{N}}$ is convergent. The sequence $\left\{\lim _{n \rightarrow \infty} a_{m n}\right\}_{m \in \mathbb{N}}$ is convergent.
- For every $n \in \mathbb{N}$, the sequence $\left\{a_{m n}\right\}_{m \in \mathbb{N}}$ is convergent. The sequence $\left\{\lim _{m \rightarrow \infty} a_{m n}\right\}_{n \in \mathbb{N}}$ is convergent.
- We have $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} a_{m n} \neq \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} a_{m n}$.

14. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. Does the sequence $\left\{\frac{1}{n} \sum_{k=1}^{n} x_{k}\right\}_{n \in \mathbb{N}}$ have to converge?
15. Let x be a real number. Does the sequence $\frac{\lfloor x\rfloor+\lfloor 2 x\rfloor+\cdots+\lfloor n x\rfloor}{n^{2}}$ converge?
16. Does the series $\sum_{n=0}^{\infty} e^{i n}$ converge?
17. Suppose that $\sum_{n=1}^{\infty} x_{n}$ is a series of positive real numbers which is convergent. Show that the following series are convergent:

- $\sum_{n=1}^{\infty} x_{n}^{2}$
- $\sum_{n=1}^{\infty} \sqrt{x_{n} \cdot x_{n+1}}$
- $\sum_{n=1}^{\infty} \frac{1}{n} \sqrt{x_{n}}$

18. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence such that the subsequences $\left\{x_{2 k}\right\}_{k \in \mathbb{N}},\left\{x_{2 k+1}\right\}_{k \in \mathbb{N}}$, and $\left\{x_{3 k}\right\}_{k \in \mathbb{N}}$ are all convergent. Show that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is convergent.
19. Suppose that $\sum_{n=1}^{\infty} x_{n}$ is a series of positive real numbers which is convergent. Show that $\sum_{n=1}^{\infty} \frac{1}{x_{n}}$ is divergent. Does the converse hold?
20. Does there exist a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of real numbers such that $\sum_{n=1}^{\infty} x_{n}^{m}=m$ for every $m \in \mathbb{N}$?
21. Find the limit superior and the limit inferior of the sequence $\left\{1+(-1)^{n}+\frac{1}{n}\right\}_{n \in \mathbb{N}}$.
22. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Assume that $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ and $\left\{x_{m_{k}}\right\}_{k \in \mathbb{N}}$ are two subsequences whose combined indices cover the entire set \mathbb{N}. Show the equality:

$$
\limsup _{n \rightarrow \infty} x_{n}=\max \left\{\limsup _{k \rightarrow \infty} x_{n_{k}}, \limsup _{k \rightarrow \infty} x_{m_{k}}\right\}
$$

What happens if the two subsequences converge to the same number? What if we have three or more subsequences? What if we have infinitely many subsequences?

