Sequences

1. Show that if the sequence of real or complex numbers \(\{x_n\}_{n \in \mathbb{N}} \) converges, than the sequence \(\{|x_n|\}_{n \in \mathbb{N}} \) also converges.
2. Show that if the sequence of vectors \(\{x_n\}_{n \in \mathbb{N}} \) converges, than the sequence \(\{||x_n||\}_{n \in \mathbb{N}} \) also converges.
3. Let \(\{x_n\}_{n \in \mathbb{N}} \) be a convergent sequence of real numbers. Show that the sequence \(\{|x_{n+1} - x_n|\}_{n \in \mathbb{N}} \) is also convergent.
4. For which complex numbers \(z \in \mathbb{C} \) does the sequence \(\{z^n\}_{n \in \mathbb{N}} \) converge? What are the possible limits?
5. Let \(\{x_n\}_{n \in \mathbb{N}} \) be an enumeration of the set of rational numbers \(\mathbb{Q} \). Describe the set of limits of all convergent subsequences of \(\{x_n\}_{n \in \mathbb{N}} \) in \(\mathbb{R} \).
6. Let \(\{x_n\}_{n \in \mathbb{N}} \) be a convergent sequence in a metric space \((X, d)\). Show that the set \(\{x_n : n \in \mathbb{N}\} \) is bounded.
7. Let \(S \) be a subset of the metric space \((X, d)\). Prove that \(x \in X \) is inside the closure of \(S \) if and only if there is a sequence \(\{s_n\}_{n \in \mathbb{N}} \) of elements of \(S \) such that \(x = \lim_{n \to \infty} s_n \).
8. Show that a subset \(S \) of a metric space \((X, d)\) is closed if and only if every convergent sequence \(\{s_n\}_{n \in \mathbb{N}} \) of elements of \(S \) has its limit in \(S \).
9. Let \((X, d)\) be a metric space with discrete metric. Which sequences in \((X, d)\) are convergent?
10. Let \(\{x_n\}_{n \in \mathbb{N}} \) and \(\{y_n\}_{n \in \mathbb{N}} \) be Cauchy sequences in a metric space \((X, d)\). Show that the sequence \(\{d(x_n, y_n)\}_{n \in \mathbb{N}} \) of real numbers is convergent.
11. Give an example of a metric space \((X, d)\) and a Cauchy sequence in \((X, d)\) which is not convergent.
12. Let \(\{x_n\}_{n \in \mathbb{N}} \) be a Cauchy sequence. Show that \(\lim_{n \to \infty} |x_{n+1} - x_n| = 0 \). Does the converse hold?
13. Find a collection of real numbers \(a_{mn} \in \mathbb{R} \) where \(m, n \in \mathbb{N} \) such that the following are all true:
 - For every \(m \in \mathbb{N} \), the sequence \(\{a_{mn}\}_{n \in \mathbb{N}} \) is convergent. The sequence \(\lim_{n \to \infty} a_{mn} \) is convergent.
 - For every \(n \in \mathbb{N} \), the sequence \(\{a_{mn}\}_{m \in \mathbb{N}} \) is convergent. The sequence \(\lim_{m \to \infty} a_{mn} \) is convergent.
 - We have \(\lim_{m \to \infty} \lim_{n \to \infty} a_{mn} \neq \lim_{n \to \infty} \lim_{m \to \infty} a_{mn} \).
14. Let \(\{x_n\}_{n \in \mathbb{N}} \) be a bounded sequence of real numbers. Does the sequence \(\left\{ \frac{1}{n} \sum_{k=1}^{n} x_k \right\}_{n \in \mathbb{N}} \) have to converge?
15. Let \(x \) be a real number. Does the sequence \(\frac{|x| + |2x| + \cdots + |nx|}{n^2} \) converge?
16. Does the series \(\sum_{n=0}^{\infty} e^{in} \) converge?
17. Suppose that \(\sum_{n=1}^{\infty} x_n \) is a series of positive real numbers which is convergent. Show that the following series are convergent:
 - \(\sum_{n=1}^{\infty} x_n^2 \)
 - \(\sum_{n=1}^{\infty} \sqrt{x_n \cdot x_{n+1}} \)
 - \(\sum_{n=1}^{\infty} \frac{1}{n} \sqrt{x_n} \)
18. Suppose that \(\sum_{n=1}^{\infty} x_n \) is a series of positive real numbers which is convergent. Show that \(\sum_{n=1}^{\infty} \frac{1}{x_n} \) is divergent. Does the converse hold?
19. Does there exist a sequence \(\{x_n\}_{n \in \mathbb{N}} \) of real numbers such that \(\sum_{n=1}^{\infty} x_n^m = m \) for every \(m \in \mathbb{N} \)?
20. Find the limit superior and the limit inferior of the sequence \(\{1 + (-1)^n + \frac{1}{n}\}_{n \in \mathbb{N}} \).
21. Let \(\{x_n\}_{n \in \mathbb{N}} \) be a bounded sequence of real numbers. Prove that \(\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \sup \{x_k : k \geq n\} \).