Topology

1. Determine the interior, closure, limit points, and isolated points of the following subsets of the plane:

 (a) $\{(x, y) : xy = 0\}$ (d) $\mathbb{Z} \cup \{(x, y) : x > 0\}$ (g) $[0, 1] \times [0, 1\rangle$

 (b) $\{(x, y) : x^2 + y^2 \neq 1\}$ (e) \varnothing (h) $\mathbb{Q} \times \mathbb{R}$

 (c) $\{(\frac{1}{n}, -\frac{1}{n}) : n \in \mathbb{N}\}$ (f) \mathbb{R}^2 (i) $\mathbb{Q} \times [0, 1\rangle$

Which of the sets above are open? Which ones are closed? Bounded?

2. Let (X, d) be a metric space. The distance between a point $x \in X$ and a non-empty subset $S \subseteq X$ is defined by

 $d(x,S) := \inf\{d(x,s) : s \in S\}$

Let S be a proper subset of X which has more than one element. Prove the following statements:

- (a) $x \in \bar{S} \Leftrightarrow d(x, S) = 0$
- (b) $x \in \mathring{S} \Leftrightarrow d(x, S^c) > 0$
- (c) x is a limit point of $S \Leftrightarrow d(x, S \{x\}) = 0$
- (d) $x \in S$ is an isolated point of $S \Leftrightarrow d(x, S \{x\}) > 0$
- 3. Show that the complement of \mathring{S} is equal to $\overline{S^c}$.

4. Show that in \mathbb{R}^n the closure of the open ball B(x,r) is the closed ball $\overline{B}(x,r)$. Is this true in any metric space?

- 5. Show that in \mathbb{R}^n the interior of the closed ball $\overline{B}(x,r)$ is the open ball B(x,r). Is this true in any metric space?
- 6. Investigate which of the following are true:

What happens if we replace the closure operation with the interior operation?

- 7. Is the set of all algebraic numbers dense in \mathbb{R} ?
- 8. Investigate if there exists a countably infinite subset S of the Euclidean space \mathbb{R}^n such that:

(a) S is open and S is not closed	(e) S is closed and S is not open	(i) S is countable
(b) S is neither open nor closed	(f) S is open and closed	(j) \bar{S} is uncountable
(c) S is compact	(g) \bar{S} is compact	(k) \mathring{S} is not empty
(d) S is not compact	(h) \bar{S} is not compact	(l) $\bar{S} - S$ is countably infinite

Do the same if the set \mathbb{R}^n is equipped with the discrete metric.

- 9. Let (X, d) be a metric space such that the set X is finite. Show that any subset of X is open.
- 10. Show that the set of all open subsets of \mathbb{R} has the same cardinality as the set \mathbb{R} .
- 11. Show that any finite subset of a metric space is compact.
- 12. Show that the set $\{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ is a compact subset of \mathbb{R} .
- 13. Show that a finite union of compact subsets of a metric space is compact.
- 14. Show that a compact subset of any metric space is bounded.
- 15. Is every closed and bounded subset of a metric space compact?
- 16. Let d be the discrete metric on a set X. Determine which subsets of the metric space (X, d) are compact.
- 17. Let (X, d) be a metric space and let Y be a subset of X. Show that the set Y equipped with the mapping $d|_{Y \times Y} : Y \times Y \to \mathbb{R}$ forms a metric space.

- 18. Let (X, d) be a metric space and let Y be a subset of X. Show that the subset S of Y is open relative to Y if and only if S is an open subset of the metric space $(Y, d|_{Y \times Y})$.
- 19. Let \Bbbk be a field and consider the set of all formal power series with coefficients in the field \Bbbk :

 $\mathbb{k}[[x]] = \left\{ \sum_{k=0}^{\infty} a_k x^k : a_0, a_1, a_2, \dots \text{ is a sequence of elements of } \mathbb{k} \right\}$

Prove that the set $\mathbb{k}[[x]]$ can be made into a metric space by defining the distance between $\sum_{k=0}^{\infty} a_k x^k$ and $\sum_{k=0}^{\infty} b_k x^k$ to be either zero if these series are identical, or $\frac{1}{2^k}$ if k is the smallest index such that $a_k \neq b_k$.

20. Determine the interior and the closure of the set k[x] of all polynomials in k[[x]].