Topology

1. Determine the interior, closure, limit points, and isolated points of the following subsets of the plane:
(a) $\{(x, y): x y=0\}$
(d) $\mathbb{Z} \cup\{(x, y): x>0\}$
(g) $[0,1] \times[0,1\rangle$
(b) $\left\{(x, y): x^{2}+y^{2} \neq 1\right\}$
(e) \varnothing
(h) $\mathbb{Q} \times \mathbb{R}$
(c) $\left\{\left(\frac{1}{n},-\frac{1}{n}\right): n \in \mathbb{N}\right\}$
(f) \mathbb{R}^{2}
(i) $\mathbb{Q} \times[0,1\rangle$

Which of the sets above are open? Which ones are closed? Bounded?
2. Let (X, d) be a metric space. The distance between a point $x \in X$ and a non-empty subset $S \subseteq X$ is defined by

$$
d(x, S):=\inf \{d(x, s): s \in S\}
$$

Let S be a proper subset of X which has more than one element. Prove the following statements:
(a) $x \in \bar{S} \Leftrightarrow d(x, S)=0$
(b) $x \in \stackrel{\circ}{S} \Leftrightarrow d\left(x, S^{c}\right)>0$
(c) x is a limit point of $S \Leftrightarrow d(x, S-\{x\})=0$
(d) $x \in S$ is an isolated point of $S \Leftrightarrow d(x, S-\{x\})>0$
3. Show that the complement of $\stackrel{S}{S}$ is equal to $\overline{S^{c}}$.
4. Show that in \mathbb{R}^{n} the closure of the open ball $B(x, r)$ is the closed ball $\bar{B}(x, r)$. Is this true in any metric space?
5. Show that in \mathbb{R}^{n} the interior of the closed ball $\bar{B}(x, r)$ is the open ball $B(x, r)$. Is this true in any metric space?
6. Investigate which of the following are true:

- $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$
- $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$
- $\overline{A \cap B} \supseteq \bar{A} \cap \bar{B}$
- $\overline{A \cup B} \supseteq \bar{A} \cup \bar{B}$

What happens if we replace the closure operation with the interior operation?
7. Is the set of all algebraic numbers dense in \mathbb{R} ?
8. Investigate if there exists a countably infinite subset S of the Euclidean space \mathbb{R}^{n} such that:
(a) S is open and S is not closed
(e) S is closed and S is not open
(i) \bar{S} is countable
(b) S is neither open nor closed
(f) S is open and closed
(j) \bar{S} is uncountable
(c) S is compact
(g) \bar{S} is compact
(k) $\stackrel{\circ}{S}$ is not empty
(d) S is not compact
(h) \bar{S} is not compact
(l) $\bar{S}-S$ is countably infinite

Do the same if the set \mathbb{R}^{n} is equipped with the discrete metric.
9. Let (X, d) be a metric space such that the set X is finite. Show that any subset of X is open.
10. Show that the set of all open subsets of \mathbb{R} has the same cardinality as the set \mathbb{R}.
11. Show that any finite subset of a metric space is compact.
12. Show that the set $\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is a compact subset of \mathbb{R}.
13. Show that a finite union of compact subsets of a metric space is compact.
14. Show that a compact subset of any metric space is bounded.
15. Is every closed and bounded subset of a metric space compact?
16. Let d be the discrete metric on a set X. Determine which subsets of the metric space (X, d) are compact.
17. Let (X, d) be a metric space and let Y be a subset of X. Show that the set Y equipped with the mapping $\left.d\right|_{Y \times Y}: Y \times Y \rightarrow \mathbb{R}$ forms a metric space.
18. Let (X, d) be a metric space and let Y be a subset of X. Show that the subset S of Y is open relative to Y if and only if S is an open subset of the metric space $\left(Y,\left.d\right|_{Y \times Y}\right)$.
19. Let \mathbb{k} be a field and consider the set of all formal power series with coefficients in the field \mathbb{k} :

$$
\mathbb{k}[[x]]=\left\{\sum_{k=0}^{\infty} a_{k} x^{k}: a_{0}, a_{1}, a_{2}, \ldots \text { is a sequence of elements of } \mathbb{k}\right\}
$$

Prove that the set $\mathbb{k}[[x]]$ can be made into a metric space by defining the distance between $\sum_{k=0}^{\infty} a_{k} x^{k}$ and $\sum_{k=0}^{\infty} b_{k} x^{k}$ to be either zero if these series are identical, or $\frac{1}{2^{k}}$ if k is the smallest index such that $a_{k} \neq b_{k}$.
20. Determine the interior and the closure of the set $\mathbb{k}[x]$ of all polynomials in $\mathbb{k}[[x]]$.

