Example: S4

The representatives are 1, (12)(34), (12), (1234), (123)

	(1)	(3)	(6)	(6)	(8)			
χ ₁ χ ₂ χ ₃ χ ₄ χ ₅	1 1 ? ? ?	1 1	1 -1	1 -1	1 1	← the	sign	representation

From $1^2+1^2+?^2+?^2=24$ we get that the dimensions of the irreducible representations are 1,1,2,3,3.

	(1)	(3)	(6)	(6)	(8)
χı	1	1	1	1	1
χ2	1	1	-1	-1	1
<u>χ</u> 3	2	2	2	2	2
λ4 χ5	3	1	1	1	:

The representation of S_4 as a full symmetry group of a tetrahedron is irreducible, so we can compute its character to determine the fourth row of the table. To compute the trace of a linear operator we can always choose a basis in which to represent the operator as a matrix and we should try to choose the most suitable basis.

	(1)	(3)	(6)	(6)	(8)	
χı	1	1	1	1	1	
χ2	1	1	-1	-1	1	
χз	2					
χ4	3	-1	1	-1	0	\leftarrow e.g. for (1234) we pick vertices $\{v_1, v_2, v_3\}$ to be the basis and
χ5	3	?	?	?	?	then we have $v_1 \rightarrow v_2$, $v_2 \rightarrow v_3$, $v_3 \rightarrow v_4 = -v_1 - v_2 - v_3$

If $\rho:G\rightarrow GL(V)$ is a (irreducible) representation with character χ and $\varphi:G\rightarrow \mathbb{C}^*$ is a group homomorphism, then $\varphi \cdot \rho:G\rightarrow GL(V)$ is also a (irreducible) representation whose character is equal to $\varphi \cdot \chi$.

Hence, $\chi_2 \cdot \rho_4$ is a 3-dimensional irreducible representation. Since its character is $\chi_2 \cdot \chi_4$ we see that this representation is different from ρ_4 so this is the missing 3-dimensional irreducible representation:

	(1)	(3)	(6)	(6)	(8)
χ1 Υ2	1 1	1 1	1 -1	1 -1	1
χ ₃	2	?	?	?	?
χ4	3	- 1	1	-1	0
χ5	3	- 1	-1	1	0

For the unique two dimensional irreducible character we can use the orthogonality relations which will give as a system of 4 equations with 4 unknowns:

3a	+	6b	+	6c	+	8d	=	-2	← since 2,3,6,6,8 are real numbers their conjugates	
3a	-	6b	-	6c	+	8d	=	- 2	are the numbers themselves	
-3a	+	6b	-	6c	+	0d	=	-6		
-3a	-	6b	+	6c	+	0d	=	-6		

Note that the unknowns a, b, c, d are COMPLEX numbers. We can solve this system (add last two then add first two etc.) and complete the table:

	(1)	(3)	(6)	(6)	(8)
χ ₁	1	1	1	1	1
Υ ₂	1	1	-1	-1	1
χ- χ3	2	2	Ō	Ō	-1
χ ₄	3	-1	1	-1	0
χ ₅	3	-1	-1	1	0

The two dimensional representation can be realized as $S_4 \rightarrow S_3 \approx D_3 \rightarrow GL(\mathbb{C}^2)$ where the first map $S_4 \rightarrow S_3$ is induced by the conjugation action of the group S_4 on the set $\{(12)(34), (13)(24), (14)(23)\}$.