Example: S4

The representatives are $1,(12)(34),(12),(1234),(123)$

	(1)	(3)	(6)	(6)	(8)
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	$?$				
χ_{4}	$?$				
χ_{5}	$?$				

From $1^{2}+1^{2}+?^{2}+?^{2}+?^{2}=24$ we get that the dimensions of the irreducible representations are $1,1,2,3,3$.

	(1)	(3)	(6)	(6)	(8)
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	2				
χ_{4}	3	$?$	$?$	$?$	$?$
χ_{5}	3				

The representation of S_{4} as a full symmetry group of a tetrahedron is irreducible, so we can compute its character to determine the fourth row of the table. To compute the trace of a linear operator we can always choose a basis in which to represent the operator as a matrix and we should try to choose the most suitable basis.

	(1)	(3)	(6)	(6)	(8)
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	2				
χ_{4}	3	-1	1	-1	0
χ_{5}	3	$?$	$?$	$?$	$?$

If $\rho: G \rightarrow G L(V)$ is a (irreducible) representation with character χ and $\varphi: G \rightarrow \mathbb{C} *$ is a group homomorphism, then $\varphi \cdot \rho: G \rightarrow G L(V)$ is also a (irreducible) representation whose character is equal to $\varphi \cdot \chi$.

Hence, $\chi_{2} \cdot \rho_{4}$ is a 3 -dimensional irreducible representation. Since its character is $\chi_{2} \cdot \chi_{4}$ we see that this representation is different from ρ_{4} so this is the missing 3-dimensional irreducible representation:

	(1)	(3)	(6)	(6)	(8)
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	2	$?$	$?$	$?$	$?$
χ_{4}	3	-1	1	-1	0
χ_{5}	3	-1	-1	1	0

For the unique two dimensional irreducible character we can use the orthogonality relations which will give as a system of 4 equations with 4 unknowns:

```
    3a + 6b + 6c + 8d = -2 \leftarrow since 2,3,6,6,8 are real numbers their conjugates
    3a - 6b - 6c + 8d = -2 are the numbers themselves
-3a + 6b - 6c + 0d = -6
-3a-6b + 6c + 0d = -6
```

Note that the unknowns a, b, c, d are COMPLEX numbers. We can solve this system (add last two then add first two etc.) and complete the table:

	(1)	(3)	(6)	(6)	(8)
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	2	2	0	0	-1
χ_{4}	3	-1	1	-1	0
χ_{5}	3	-1	-1	1	0

The two dimensional representation can be realized as $S_{4} \rightarrow S_{3} \simeq D_{3} \rightarrow G L\left(\mathbb{C}^{2}\right)$ where the first map $S_{4} \rightarrow S_{3}$ is induced by the conjugation action of the group S_{4} on the set $\{(12)(34),(13)(24),(14)(23)\}$.

