
Groups naturally arise as collections of functions which preserve certain property of the system under 
consideration. These types of collections happen to be equipped with an operation which make them groups. 
An analogy can be made with the collection of all natural numbers {1,2,3,…} which is not just a set but 
it has additional structure - we can add and even multiply its elements.

Now how do the aforementioned collections of functions arise? This is related with the notion of 
symmetry. Let S={(x,y)∊ℝ² : -1≤x≤1 and -1≤y≤1} be a square. We would like to say that S has a certain 
rotational and bilateral symmetry, but that it doesn't have translational symmetry. How to encode this 
mathematically?

Let R(ϑ):ℝ²→ℝ² be the function which rotates the whole plane about the origin by the angle ϑ. One can 
explicitly write this in the following way R(ϑ)(x,y) = (x⋅cosϑ - y⋅sinϑ, x⋅sinϑ + y⋅cosϑ). This function 
transforms the whole plane ℝ², for example it sends:
    - the point (0,0) to (0,0)
    - the point (1,0) to (cosϑ, sinϑ)
    - the point (0,2) to (-2⋅sinϑ, 2⋅cosϑ)

The set R(ϑ)(S) is the set of all points of the square S which are rotated by ϑ - so it is the square S 
rotated by the angle ϑ. Note that:
    - R(30°)(S) ≠ S
    - R(90°)(S) = S
    - R(180°)(S) = S

We say that R(90°) is a symmetry of the square S since the 90° rotation tranforms the square S back to 
itself. R(30°) is not a symmetry of S since it transforms S to something else.

Now let's abstract. Fix a subset X⊆ℝⁿ (we're interested in the cases n=2 and n=3). X can be a triangle, 
square, sphere, circle, random bunch of points… We define: 

    Sym X := {f:ℝⁿ→ℝⁿ | f is a distance preserving bijection such that f(X)=X}

Here distance preserving means d(f(x),f(y))=d(x,y) where the Euclidean distance d(x,y) is given by the 
usual formula √∑(yᵢ-xᵢ)².

Sym X is a subset of the group of all permutations of the set ℝⁿ. It is easy to check that Sym X is a 
subgroup of the group of permutations of ℝⁿ.

In the case of the square S it can be shown that Sym S = {1,r,r²,r³,s,rs,r²s,r³s} where r:ℝ²→ℝ² is the 
rotation R(90°) and s:ℝ²→ℝ² is the reflection about the x-axis.

  ⋯⋯⋯⋯⋯⋯⋯

More generally, for n≥3 let Pₙ be the standard polygon with n vertices and n edges. We define the group 
Dₙ as the symmetry group Sym Pₙ. It turns out that Dₙ has 2n elements:

    Dₙ = {1,r,r²,…,rⁿ⁻¹,s,rs,r²s,…,rⁿ⁻¹s}

Here, r:ℝ²→ℝ² is the rotation by the angle 2π/n and s:ℝ²→ℝ² is the reflection about the x-axis. The 
element rᵏs is the reflection about the line which passes through the origin and forms the angle k⋅π/n 
with the x-axis. The relations satisfied by r and s are:
    - rⁿ=1
    - s²=1
    - sr=r⁻¹s (so Dₙ is not commutative)

We see that an elements f of Sym Dₙ is actually a function f:ℝ²→ℝ² which transforms the plane. We say 
that f acts on the plane. This is how groups appear naturally - as bunches of functions acting on some 
set. We'd like to abstract this. There are two equivalent definitions of what a group action is. So, let 
(G,∗) be a group and X a set.

DEF 1)  A group action is a group homomorphism Φ:G→Sₓ.
DEF 2)  A group action is a rule R:G⨯X→X which assigns to every pair (g,x) consisting of g∊G and x∊X, 
        an element R(g,x)=g⋅x of the set X such that the following holds:
            (a) e⋅x=x for every x∊X
            (b) g⋅(h⋅x) = (g∗h)⋅x for every g,h∊G and x∊X

Let's prove that these two definitions are equivalent. We'll define two bijections α:E₁→E₂ and β:E₂→E₁ 
where E₁:={all homomorphisms Φ:G→Sₓ} and E₂:={all group action rules R:GxX→X}. First we define α:E₁→E₂. 
Assume we have a homomorphism Φ:G→Sₓ. Then we can construct out of it the following rule:
    R(g,x) := Φ(g)(x)
One can check that R satisfies conditions (a) and (b) and hence we can take this R to be the output α(Φ).



Now we construct a map β:E₂→E₁. Given g∊G we can define the function m_g:X→X (multiplication by g) which 
operates m_g(x):=g⋅x. The function m_g is a bijection, the inverse being m_g⁻¹. Now define the 
homomorphism Φ:G→Sₓ by saying Φ(g):=m_g. One can check that Φ:G→Sₓ is indeed a homomorphism and hence we 
can take this Φ to be the output β(R).

Now we have maps in both directions and it is straightforward to check that α and β are inverses of each 
other.

Examples:
E1) Let V={v₁,v₂,v₃,v₄} be the set of all the vertices of the square S. Then every symmetry of S maps a 
vertex vᵢ to some vertex vⱼ and this induces a group action of Sym S on the set V. Example calculations:
    r⋅v₁=v₂         s⋅v₁=v₄
    r⋅v₂=v₃         s⋅v₂=v₃
    r⋅v₃=v₄         s⋅v₃=v₂
    r⋅v₄=v₁         s⋅v₄=v₁

This generalizes to any polygon Pₙ in the plane.

E2) Let D={d₁,d₂} be the set of all the diagonals of the square S. Then every symmetry of S maps a 
diagonal dᵢ to some diagonal dⱼ so we get an action of Sym S on the set D.

E3) Let (G,∗) be a group and let X=G. G acts on itself by the left multiplication g⋅x:=g∗x. G also acts 
on itself by right multiplication g⋅x:=x∗g⁻¹.

E4) Let (G,∗) be a group and let X=G. G acts on itself by the conjugation action g⋅x=g∗x∗g⁻¹.

  ──────────────

Some important definitions:

Let (G,∗) be a group which acts on a set X. We can define an equivalence relation on X by saying that 
x'~x" if there exists g∊G such that x"=g⋅x'. For x∊X, then the equivalence class [x] is denoted by Oₓ and 
is called the ORBIT of x. We have:
  Oₓ = {x' | x'~x}
     = {x' | there exists g∊G such that x'=g⋅x}
     = {g⋅x | g∊G}.

Beacuse of the last equality we sometimes use the notation G⋅x for the orbit Oₓ. As usual with the 
equivalence classes, the orbits partition the set X. Moreover, the group operates independently on each 
orbit.

We say that a group G acts TRANSITIVELY on a set X if there exists only one orbit of X under the action 
of G. This orbit is then the whole set X. In that case, for any x∊X we have X=Oₓ. Transitivity is 
equivalent to the fact that for every pair of elements x',x"∊X there exists g∊G such that x"=g⋅x'.

A STABILIZER of an element x∊X is a subset Gₓ⊆G defined as Gₓ:={g∊G | g⋅x=x}. It is easy to check that Gₓ 
is a actually a subgroup of G.

The action of G on X is FAITHFUL if the homomorphism Φ:G→Sₓ is injective. This means that if the element 
g∊G acts as the identity, so that g⋅x=x for all x∊X, then g must be the identity e∊G. Note that even when 
the action is faithful, there still might exist g≠e such that g⋅x=x for some (but not all) x∊X.

Examples (these are the continuation of the previous examples E1,…,E4)
E1) G acts transitively and faithfully on V. The stabilizer of v₁ is the subgroup {1,rs} which is not 
normal.
E2) G acts transitively but not faitfully on D because r² acts as the identity. The stabilizer of d₁ is 
the subgroup {1,r²,rs,r³s} which is normal (it is of index 2).
E3) G acts transitively and faithfully on G. The stabilizer of g is the subgroup {e}. More generally, for 
H a subgroup of G we can define two actions of the group H on the set X=G:
    - h⋅x=h∗x
    - h⋅x=x∗h⁻¹
The orbits of the first actions are the right cosets, and of the second are the left cosets of H. 
Stabilizer of every point is trivial and the action is faithful.
E4) The orbits of this action are called CONJUGACY CLASSES. The conjugation action is faithful if and 
only if the center of the group G is trivial. The action is not transitive (unless the group G is 
trivial) as {e} is always one orbit. As an example let's take S₃. We have the following orbits:
    - {1}
    - {(123),(132)}
    - {(12),(13),(23)}



Stabilizers are as follows:
    - the stabilizers of 1 is the whole S₃
    - the stabilizer of both (123) and (132) is {1,(123),(132)}.
    - the stabilizer of (12) is {1,(12)}, (13) is {1,(13)}, and (23) is {1,(23)}

  ──────────────

PROP. 6.7.7. Let G act on X. Fix x∊X, and let Gₓ be the stabilizer of x. Then:
    (a) for g,h∊G we have g⋅x=h⋅x ⇔ g⁻¹h∊Gₓ
                                  ⇔ h∊gGₓ
    (b) if x'∊Oₓ so that x'=g⋅x, then the stabilier Gₓ' of x' is the conjugate group gGₓg⁻¹

Example: The group (G,∗) operates on the set of all left cosets G/H in the following way. If C is a left 
coset with representative c∊C, so that C=[c]=cH, then we define g⋅C to be the coset represented by g∗c:
    g⋅cH := (g∗c)H

This is a well defined operation, i.e. it doesn't depend on the choice of the representative c∊C of the 
coset C.

PROP. 6.8.1 Let H be a subgroup of G.
    (a) The action of G on the set G/H of left cosets of H is transitive
    (b) The stabilizer of the coset [e]=H∊G/H is the subgroup H of G

Note that multiplication of H by an element h∊H generally doesn't act as an identity on H, but it still 
maps H precisely to H, i.e. h⋅H=H but for a given h'∊H we might have h∗h'≠h'.

Example: Let G=S₃ and H={1,(12)}. Then the set of left cosets is the following:
    G/H = {H, {(13),(123)}, {(23),(132)}} = {C₁,C₂,C₃}

Example calculations: (12)⋅C₁=(12)⋅H=H=C₁ ⇒ (12) is in the stablizer of C₁
                      (13)⋅C₃=(13)⋅{(23),(132)}={(132),(23)}=C₃ ⇒ (13) is in the stabilizer of C₃
                      (123)⋅C₃=(123)⋅{(23),(132)}={(12),1}=C₁ ⇒ (123) is not in the stabilizer of C₃

PROP 6.8.4 Let G act on X, and let x∊X. Let Gₓ be the stabilizer of x, and let Oₓ be the orbit of x. Then 
there is a bijective map:
    ε:G/Gₓ→Oₓ
defined by the rule ε(gGₓ):=g⋅x. This map is compatible with the action of G on G/Gₓ and on Oₓ, i.e. ε
(g⋅C)=g⋅ε(C) where C∊G/Gₓ is a left coset of Gₓ.

Note that G/Gₓ is a set of all left cosets and it might not have a natural structure of a group since Gₓ 
might not be normal.

If H is a subgroup of G, the number of elements of G/H is called the INDEX of H in G and is denoted by 
[G:H]. For example [ℤ:nℤ]=n since there are n left cosets of nℤ in ℤ. The number of left cosets is always 
the same as the number of right cosets.

If G is finite, we know that |G|=|H||G/H|=|H|[G:H].

PROP 6.9.2 (THE COUNTING FORMULA). Let a finite group G act on a finite set X. Then |G|=|Gₓ||Oₓ|.
This follows from the proposition 6.8.4: |G|=|Gₓ||G/Gₓ|=|Gₓ||Oₓ|.

This means that |Oₓ|=[G:Gₓ]. The equality |Oₓ|=[G:Gₓ] is true even if G is infinite since |Oₓ|=|G/Gₓ|=
[G:Gₓ].

Another useful formula uses the fact that the orbits of the action of G on X partition the set X, so that 
if X is finite, we have finitely many orbits O₁,O₂,…,Oₖ where Oᵢ≠Oⱼ if i≠j and then
    |X|=|O₁|+|O₂|+⋯+|Oₖ|

  ──────────────

Dodecahedron example (https://www.mathsisfun.com/geometry/dodecahedron.html):
Sym D acts on the set of faces F of the dodecahedron. The stabilizer of a particular face f∊F consists of 
5 rotations by k⋅2π/5 as well as 5 reflections about planes which pass through a vertex vᵢ∊f of the face 
f and the midpoint of the side sitting opposite to vᵢ and are perpendicular to f. So, the stablizer has 
10 elements. Since the dodecahedron has 12 faces and Sym D operates transitively on the set of faces, we 
conclude |Sym D|=10⋅12=120.

Note: The calculation in the textbook is a bit different. The reason is that the group which is 
calculated there is not Sym D, but the group of rotational symmetries which is a subgroup of the full 
group of symmetries Sym D. The stablizer in this case only includes 5 rotations and no reflections. Since 



the group of rotational symmetries also acts transitively on the set of faces, the order of the group of 
rotational symmetries of the dodecahedron is 60.

Now we can count the number of vertices. Note that Sym D acts transitively on the set of vertices and 
that |Gᵥ|=6 (three rotations and three reflections), hence |V|=|G|/|Gᵥ|=20. For the edges we get |E|=|G|/|
Gₑ| and |Gₑ|=4 (2 rotations and 2 reflections) so |E|=30.

Here we used symmetry to solve the problem, i.e. the fact that dodecahedron had certain symmetry helped 
us to calculate |V| and |E|. You can try to do the analogous calculations for:
    - cube (https://www.mathsisfun.com/geometry/hexahedron.html)
    - tetrahedron (https://www.mathsisfun.com/geometry/tetrahedron.html)
    - octahedron (https://www.mathsisfun.com/geometry/octahedron.html)
    - icosahedron (https://www.mathsisfun.com/geometry/icosahedron.html)

  ──────────────

Extra examples: some actions of S₃
Let S₃ act on two sets U and V of order 3. Decompose the U⨯V into orbits for the diagonal action when:
    (a) operation on U and V is transitive
    (b) operation of U is transitive, while the orbits of the action on V are {v₁} and {v₂,v₃}.

For (a) let's look at the action of S₃ on U. For u∊U we have that |Oᵤ|=3 ⇒ |Gᵤ|=2. Hence Gᵤ={1,s} where   
s∊{(12),(13),(23)}. Since the elements of the same orbit have conjugate stabilizers, we can assume that 
we've chosen u such that Gᵤ={1,(12)}. Similarily, choose v∊V such that Gᵥ={1,(12)}. Then the stablizer of 
(u,v) contains 1 and (12).

Let r=(123) and r²=(132). Then ru≠u and r²u≠u since these elements are not in Gᵤ. Moreover, we claim that 
r²u∉{u,ru}. We only need to check r²u≠ru and this holds because the equality would imply ru=u. Hence, 
U={u,ru,r²u} and in the same way V={v,rv,r²v}.

Note that the orbit of (u,v) contains at least three different elements, namely (u,v), (ru,rv), and 
(r²u,r²v). Since its stabilizer has at least 2 elements, we conclude by the orbit stabilizer theorem that 
the orbit has to be equal to {(u,v), (ru,rv), (r²u,r²v)}.

To calculate the stabilizer of (ru,v) set g(ru,v)=(ru,v). This implies gv=v hence g is either 1 or (12). 
In the latter case we would have (12)ru=ru ⇒ (12)(123)u=ru ⇒ (132)(12)u=ru ⇒ r²u=ru ⇒ ru=u which is a 
contradiction. Hence, the stabilizer of (ru,v) is trivial, and hence the orbit of (ru,v) has 6 elements. 
So there are two orbits:
    {(u,v), (ru,rv), (r²u,r²v)}
    {(ru,v), (r²u,v), (u,rv), (r²u,rv), (u,r²v), (ru,r²v)}

For (b) let's look at the stabilizers. We again pick u∊U such that U={u,ru,r²u} and Gᵤ={1,(12)}. We 
calculate the stabilizer of (u,v₁).
g(u,v₁)=(u,v₁) is equivalent to gu=u since every g acts trivially on v₁. Hence, the stabilizer of (u,v₁) 
is actually {1,(12)}. This means that the orbit has order 3. Since we can easily find three distinct 
elements in the orbit, we're done in this case:
    {(u,v₁), (ru,v₁), (r²u,v₁)}
Now let's look at the stabilizer of v₂. Since the orbit has order 2, the stabilizer has order 3. Hence it 
must be {1,(123),(132)} since that is the only subgroup of S₃ of order 3. Now we calculate the stabilizer 
of (u,v₂):
    g(u,v₂)=(u,v₂) implies gu=u and gv₂=v₂ ⇒ g∊{1,(12)} and g∊{1,(123),(132)} so we conclude g=1
Hence, the stabilizer is trivial and so the orbit has order 6. So we have two orbits:
    {(u,v₁), (ru,v₁), (r²u,v₁)}
    {(u,v₂), (ru,v₂), (r²u,v₂), (u,v₃), (ru,v₃), (r²u,v₃)}

Example: operations on subsets
If G acts on X, and if S is a subset of X, then gS:={g⋅s | s∊S} is a subset such that |S|=|gS| since the 
function s↦g⋅s is a bijection between S and gS. This allows us to define the action of G on the set of 
all subsets of X of order r.

Example: Sym C where C is a cube. This group has 48 elements. This group acts on the set of faces F of C, 
hence also on the set of all unordered pairs of faces of C (case r=2). There are 15 pairs and they form 
two orbits
    {pairs of opposite faces} ~ easily can rotate one into another, there are 3 such pairs
    {pairs of adjacent faces} ~ rotate first one face to match, and then rotate the other one, 
                                there are 15-3=12 elements in this orbit

The stabilizer of a subset S of order r is the set of all g such that gS=S. Note that this doesn't mean 
that g⋅s=s for every s∊S, just that the elements of S get mapped back to S and they will likely get 
permuted.


