
Let f:V→V be a linear operator on a vector space V. If we pick a basis {e₁,…,eₙ} we can represent f by a 
matrix A. This representation depends on the choice of the basis. If we choose another basis {f₁,…,fₙ}, 
and if T is the transition matrix, then the operator f in the new basis will have the matrix B=T⁻¹AT - 
the new matrix is a conjugate of A.

Now let ρ:G→GL(V) be a representation of a finite group G. If we pick a basis {e₁,…,eₙ} of V we can 
represent a chosen operator ρ(g) by a matrix A. However, the matrix A can be big and may contain many non-
zero entries suggesting that it encodes a lot of data. This is misleading - since G is finite we have 
gⁿ=1 for n=|G|. Hence, ρ(g) satisfies the polynomial equation xⁿ-1=0. Since the minimal polynomial μ(x) 
of the operator ρ(g) has to divide xⁿ-1 and since xⁿ-1=(x-1)(x-ζ)⋯(x-ζⁿ⁻¹) we conclude that μ(x) is a 
product of distinct linear factors which means that ρ(g) diagonalizes in some basis. So, if we choose a 
suitable basis, the matrix corresponding to ρ(g) will be diagonal. Furthemore, the entries on the 
diagonal are some n-th roots of unity because ρ(g)ⁿ=1. So we see that ultimately every operator ρ(g) can 
be represented by a diagonal matrix whose diagonal entries are highly restricted.

Note that this doesn't mean that there is a basis in which all the operators ρ(g) diagonalize 
simultaneously as the operators ρ(g) and ρ(h) may not commute!

It turns out that the information stored in ρ(g) can be quite accurately compressed to a single complex 
number, namely its trace.
  ____________________________

The character χᵨ of a representation ρ on a vector space V is the function χᵨ:G→ℂ such that χᵨ(g) is the 
trace of the linear operator ρ(g).

The dimension of the character is the dimension of V. The character of an irreducible representation ρ is 
called irreducible character.

Properties (PROP. 10.4.2):
 - χᵨ(1) is the dimension of χᵨ
 - the character is constant on conjugacy classes
 - if χᵨ has dimension d, then the complex number χᵨ(g) is a sum of d roots of unity (e.g. it cannot be π)
 - χᵨ(g⁻¹) is the complex conjugate of χᵨ(g) ~ take the inverse of the diagonalized ρ(g)
 - the character of ρ'⊕ρ" is the sum χ'+χ"
 - isomorphic representations have the same characters

Let n=|G| and let ℂᴳ be the set of all functions G→ℂ. Every such a function can be considered as a n-
tuple of complex numbers so the vector space ℂᴳ is isomorphic to ℂⁿ. On ℂᴳ we introduce the structure of 
an unitary space using the standard Hermitian product (⋅,⋅) on ℂⁿ scaled by the factor |G|:
    ⟨f,g⟩=(f,g)/|G|

The set of all characters Ch(G) is a subset of ℂᴳ (it is not a subgroup or a subspace) and we can 
calculate ⟨χ',χ"⟩ using the inner product defined on ℂᴳ.

Examples of characters of Z/4Z:
    χ₁ χ₂ χ₃ χ₄ χ₅
 1  1  1  1  1  2
 r  1  i -1 -i  0   ← this is NOT a character table
 r² 1 -1  1 -1 -2
 r³ 1 -i -1  i  0
                ↳rotations in ℂ²

Some calculations: 
 - ⟨χ₂,χ₃⟩=0     - ⟨χ₂,χ₄⟩=0     - ⟨χ₂,χ₂⟩=1
 - ⟨χ₂,χ₅⟩=1     - ⟨χ₃,χ₂⟩=0     - ⟨χ₅,χ₅⟩=2

Note that χ₅=χ₂+χ₄

Main results:
[1] Representation theory of a finite group is completely encoded by its characters since two 
representations ρ' and ρ" are isomorphic if and only if their characters are equal.

[2] There are only finitely many irreducible characters, therefore there are only finitely many 
isomorphism classes of irreducible representations. The number of irreducible characters is equal to the 
number of conjugacy classes of G.

[3] The set of irreducible characters χᵢ and χⱼ is orthonormal:
     ∑_g χᵢ(g)χⱼ(g)¯ =  0  if i≠j
                     = |G| if i=j



[4] Let χ₁,…,χₖ be all the irreducible characters of a finite group G and let dᵢ be the dimension of χᵢ. 
Then:
     - dᵢ divides the order |G|
     - |G|=d₁²+⋯+dₖ²

[5] Column orthogonality:
     ∑_χᵢ χᵢ(g)χᵢ(h)¯ is |G|/|C| if g and h belong to the same conjugacy class C, and 0 otherwise
       ↳ this is the sum over all IRREDUCIBLE characters

These results allow us to decompose any character χ as a linear combination of the irreducible characters 
χ. Namely, if we set nᵢ=⟨χ,χᵢ⟩ then χ=n₁χ₁+⋯+nₖχₖ. If ρᵢ is a representation corresponding to χᵢ, then 
ρ=n₁ρ₁⊕⋯⊕nₖρₖ.

Furthermore, if χᵨ is the character of a representation ρ, then ⟨χᵨ,χᵨ⟩=1 implies that ρ is an irreducible 
representation. Otherwise we would have in the decomposition ρ=n₁ρ₁⊕⋯⊕nₖρₖ at least two numbers nᵢ≥1 and 
hence ⟨χᵨ,χᵨ⟩≥2. This fact can be used to check whether a given representation is irreducible.

It turns out that the span of the characters in the vector space ℂᴳ is the set of all functions f:G→ℂ 
with the property that f maps conjugate elements of G to the same complex value. Hence, irreducible 
characters form a orthonormal basis for that subspace. 

Character tables:
The irreducible characters can be assembled in a table, for example D₃ has 3 conjugacy classes:

      (1)  (2)  (3)       ← number of elements in the conjugacy classes
    │  1    r    s        ← representative element of the conjugacy class
────┼────────────────
 χ₁ │  1    1    1
 χ₂ │  ?                  ← value of the character on each conjugacy class {1}, {r,r²} and {s,rs,r²s}
 χ₃ │  ?

The first row corresponds to the trivial representation ρ:G→GL(ℂ) which maps every g∊G to the identity 
operator. The first column consists of values χᵢ(1) which are dimensions dᵢ of the characters. Using the 
fact that dᵢ divides |G| and that |G|=1²+?²+?² we can easily determine the first column:

      (1)  (2)  (3)
    │  1    r    s 
────┼────────────────
 χ₁ │  1    1    1
 χ₂ │  1    ?    ?
 χ₃ │  2   

If N is a normal subgroup of G, and ρ:G/N→GL(V) is an irreducible representation of the group G/N, then 
we can compose it with the projection G→G/N to get an irreducible representation of G. So G→G/N→GL(V) is 
an irreducible representation whose character is just the composition of the projection G→G/N with the 
character χ:G→ℂ of ρ. In our case we can take N=C₃ and then G/N≃ℤ/2ℤ. Character table for ℤ/2ℤ can be 
easily determined:

      (1)  (1)
    │  0    1
────┼──────────
 ϑ₁ │  1    1
 ϑ₂ │  1    ?

The ? value has to be -1 by the orthogonality relations. If ϑ₂ corresponds to the representation ρ₂, we 
get a representation of G by composing D₃→D₃/C₃≃ℤ/2ℤ with ρ₂:G→GL(ℂ). Its character is just the 
composition of the projection D₃→D₃/C₃ with ϑ₂. So we get a irreducible character mapping 1↦1, r↦1, and 
s↦-1. So this character is a new one and we can fill the second row.

      (1)  (2)  (3)
    │  1    r    s 
────┼────────────────
 χ₁ │  1    1    1
 χ₂ │  1    1   -1
 χ₃ │  2    a    b

Note that if we consider the trivial character ϑ₁ of D₃/C₃, then the procedure above yields the character 
χ₁ of G which was already in the table.



For the last row you can use several approaches.
1) Using row orthogonality conditions we have ⟨χᵢ,χⱼ⟩=0 for i≠j which is a system of linear equations 
with variables being mising values:
  0=⟨χ₃,χ₁⟩ = 2 + 2a + 3b
  0=⟨χ₃,χ₂⟩ = 2 + 2a - 3b
This system can be easily to get a=-1,b=0. When calculating the inner product of rows, don't forget to 
take into account how many times each value in the character table appears in the sum (it apppears as 
many as there are elements in the corresponding conjugacy class). Also, don't forget the conjugates.

Note that in principle you can also use equation ⟨χ₃,χ₃⟩=1 which yields 4+2|a|²+3|b|²=6. However, this 
equation is quadratic in absolute values of complex numbers a, b and it may be difficult to extract 
usable information from it.

If we have two missing rows, then the linear system might not uniquely determine the missing values, but 
it will give some relationships between them. Consider the following table:

      (1)  (2)  (3)
    │  1    r    s 
────┼────────────────
 χ₁ │  1    1    1
 χ₂ │  1    c    d
 χ₃ │  2    a    b

We can form the following equations:
  0=⟨χ₃,χ₁⟩ = 2 +  2a  +  3b
  0=⟨χ₂,χ₁⟩ = 1 +  2c  +  3d
  0=⟨χ₃,χ₂⟩ = 2 + 2ac¯ + 3bd¯   (don't forget the conjugates)

Note that the last equation is not linear.

2) We can use the column orthogonality too, and the same caveats as in the previous case apply.

3) If we know an irreducible representation of D₃ on the plane we can just read off traces. In this case 
you have to prove that the corresponding representation is irreducible over ℂ, for example by calculating 
⟨χ,χ⟩. If you happen to have a representation which is reducible, then you can break it down into 
irreducible ones and you can use those factors to fill your table (although you may just get the ones 
already present in the table).

Finally:

      (1)  (2)  (3)
    │  1    r    s 
────┼────────────────
 χ₁ │  1    1    1
 χ₂ │  2    1   -1
 χ₃ │  2   -1    0

One-dimensional characters:
A one dimensional character is the character of a representation of G on a one-dimensional vector space. 
Such characters must be irreducible because the corresponding representation ρ is one-dimensional. This 
implies that such a character is a group homomorphism G→ℂ* since tr(AB)=tr(A)tr(B) holds if A and B are 
1x1 matrices.

A character of dimension greater than 1 is NOT necessarily a homomorphism since tr(AB)≠tr(A)tr(B) in 
general.

Regular representations come from group actions by composing the action G→Sₓ with the standard 
representation of the symmetric group Sₓ→Gl(ℂⁿ) where n=|X|.


