Sylow theorems：
1．If p is a prime number such that p^{k} divides $|G|$ ，then G contains a subgroup of order p^{k} ．
2．All Sylow p－subgroups of G are conjugate，and any p－subgroup of G is contained in a Sylow p－subgroup．
3．Let $|G|=p^{k} m$ with $p \nmid m$ ．Then the number n_{p} of Sylow p－subgroups satisfies $n_{p} \mid m$ and $n_{p} \equiv 1(m o d ~ p)$ ．
Generators：
Let S be a nonempty subset of a group G ．Then we have three equivalent definitions of what a subgroup 〈S〉 generated by S is：
1．〈S〉 is the intersection of all subgroups of G which contain S ．
2．〈S〉 is the smallest subgroup containing S ．
3．$\langle S\rangle$ is the set of all possible products $t_{1} t_{2} \cdots t_{k}$ of the elements of the set S^{-1} where $S^{-1}=\left\{s^{-1}: s \in S\right\}$ ．
We say that the set S generates the group G if $G=\langle S\rangle$ ．

Permutations：

A k－cycle is a permutation σ of $\{1, \ldots, n\}$ for which there are distinct indices $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$ such that $\sigma\left(i_{1}\right)=i_{2}$
$\sigma\left(i_{2}\right)=i_{3}$
！
$\sigma\left(i_{k-1}\right)=i_{k}$
$\sigma\left(i_{k}\right)=i_{1}$
On indices i which are different from $i_{1}, \ldots, i_{k} \sigma$ acts trivially $\sigma(i)=i$ ．We write $\sigma=\left(i_{1} i_{2} \ldots i_{k}\right)$ ．The cycles（ $i_{1} i_{2} \ldots i_{k}$ ）and（ $j_{1} j_{2} \ldots j_{2}$ ）are called disjoint if the sets $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $\left\{j_{1}, j_{2}, \ldots, j_{\imath}\right\}$ are disjoint．Note that if ρ and σ are disjoint cycles，then they commute，i．e．$\rho \sigma=\sigma \rho$ ．

Every permutation ρ is a product of disjoint cycles．To see this first pick an arbitrary index i_{1} and let $i_{2}=\rho\left(i_{1}\right), i_{3}=\rho\left(i_{2}\right)$ ，and so on until $i_{k+1}=\rho\left(i_{k}\right)$ becomes i_{1} ．Then the permutation ρ operates on the set $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ the same way as the cycle（ $i_{1} i_{2} \ldots i_{k}$ ）．Now continue by picking $j_{1} \notin\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and defining $j_{2}=\rho\left(j_{1}\right), j_{3}=\rho\left(j_{2}\right)$, etc．

A transposition is defined as a 2－cycle（ij）．Note that any k－cycle can be written as a product of k－1 transpositions，namely（ $\left.i_{1} i_{2} \ldots i_{k}\right)=\left(i_{1} i_{2}\right)\left(i_{2} i_{3}\right) \ldots\left(i_{k-1} i_{k}\right)$ ．This implies that any permutation can be written as a product of transpositions，i．e．that the transpositions generate the group Sn_{n} ．

The representation of a given permutation ρ as a product of transpositions is not unique，even the number of transpositions that appear in the representations is not unique．However，the parity of the number of transpositions which appear in the representation of ρ is unique．

We say that ρ is even permutation if for some（and hence every）representation of ρ as a product $\tau_{1} \cdots \tau_{k}$ of transpositions τ_{i} we have that k is an even number．We define the sign of an even permutation to be the number +1 ．

We say that ρ is odd permutation if for some（and hence every）representation of ρ as a product $\tau_{1} \cdots \tau_{k}$ of transpositions τ_{i} we have that k is an odd number．We define the sign of an odd permutation to be the number－1．

This yields a map sign：$S_{n \rightarrow\{-1,1\}}$ which is clearly a group homomorphism．The set of all even permutations is the kernel of this homomorphism，so it is a normal subgroup which we denote by A_{n} ．

