Examples of groups: - $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ - $(\mathbb{Q}^{\times},\cdot)$, $(\mathbb{R}^{\times},\cdot)$, (\mathbb{R}^{+},\cdot) , $(\mathbb{C}^{\times},\cdot)$, (S^{1},\cdot) , $(\mathbb{H}^{\times},\cdot)$

If T is a set and (G,*) is a group then the set G^{T} of all functions $f:T \rightarrow G$ forms a group under the operation $(f \cdot g)(t) = f(t) * g(t)$. The set C([0,1]) of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ forms a subgroup of the group of all functions $f:[0,1] \rightarrow \mathbb{R}$.

A function $f:X \rightarrow Y$ is:

- injective if f(x)=f(y) implies x=y
- surjective if for every $y \in Y$ there exists $x \in X$ such that f(x) = y
- bijective if it is injective and surjective

Inverse of a function $f:X \rightarrow Y$ is a function $g:Y \rightarrow X$ such that $(g \circ f)(x)=x$ for every $x \in X$ and $(f \circ g)(y)=y$ for every $y \in Y$. A function $f:X \rightarrow Y$ has an inverse if and only if it is bijective.

If X is a set, then the set $S_x=\{f:X\to X : f \text{ is a bijection}\}$ is a group under the operation of composition of functions. This is the symmetry group of the set X. If $X=\{1,2,...,n\}$ then we use the notation S_n for S_x .

Examples of homomorphisms:

- evaluation homomorphism $\delta_t: G^T \rightarrow G$ which operates $\delta_t(f):=f(t)$
- integration homomorphism $I:C([0,1]) \rightarrow \mathbb{R}$ which operates $I(f):=\int f(t)dt$
- multiplication $\phi_r: \mathbb{Z} \rightarrow \mathbb{Z}$ for fixed $r \in \mathbb{Z}$ which operates $\phi_r(x):=rx$