```
Examples of groups:
    - (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C,+)}
    - (\mathbb{Q}
If T is a set and (G,*) is a group then the set GT of all functions f:T->G forms a group under the
operation (f\bulletg)(t)=f(t)*g(t).
The set C([0,1]) of continuous functions f:[0,1]->\mathbb{R forms a subgroup of the group of all functions f:}
[0,1]->\mathbb{R}\mathrm{ .}
A function f:X }->\mathrm{ Y is:
    - injective if f(x)=f(y) implies x=y
    - surjective if for every y\inY there exists x\inX such that f(x)=y
    - bijective if it is injective and surjective
Inverse of a function f:X }->Y\mathrm{ is a function g:Y },X\mathrm{ such that (g०f)(x)=x for every }x\inX and (f\circg)(y)=y for
every y\inY. A function f:X }->\textrm{Y}\mathrm{ has an inverse if and only if it is bijective.
If X is a set, then the set Sx={f:X }\X=X : f is a bijection} is a group under the operation of composition
of functions. This is the symmetry group of the set X. If X={1,2,..,n} then we use the notation Sn for Sx.
Examples of homomorphisms:
    - evaluation homomorphism \deltat:G\top->G which operates \deltat(f):=f(t)
    - integration homomorphism I:C([0,1])->\mathbb{R which operates I(f):=\intf(t)dt}
    - multiplication \varphir:\mathbb{Z}->\mathbb{Z}\mathrm{ for fixed r }\in\mathbb{Z}\mathrm{ which operates }\varphir(x):=rx
```

