Additional problems

- 1. Show that a noncommutative group of order p^3 has exactly p + 4 normal subgroups.
- 2. Let H be a subgroup of index n in a group G. Show that there is a homomorphism $f: G \to S_n$ such that $H = f^{-1}(S_{n-1})$.
- 3. Let G be the set of all invertible $n \times n$ matrices each of whose rows and columns sums to 1. Show that G is a subgroup of GL(n) isomorphic to GL(n-1).
- 4. Let G be a commutative finite group which contains two distinct elements of order 2. Show that then 4 divides |G|. Is this true if G is not commutative?
- 5. Let G be a finite group and let $\varphi \colon G \to \mathbb{C}^{\times}$ be a nontrivial homomorphism. Calculate $\sum_{g \in G} \varphi(g)$.
- 6. Show that the group $\mathbb{Z}/4\mathbb{Z}$ is not isomorphic to a product of simple groups. Do the same for S_3 .
- 7. Show that if G is a noncommutative finite group, then $|Z(G)| \leq \frac{1}{4}|G|$.
- 8. For $\sigma \in S_m$ and $\tau \in S_n$ calculate the parity of the permutation of $\{1, \ldots, m\} \times \{1, \ldots, n\}$ which maps (i, j) to $(\sigma(i), \tau(j))$.
- 9. Let σ be a product of all the elements of S_n in some order. Is σ even or odd?
- 10. Let G be a p-group. Show that for every divisor d of |G| there exists a normal subgroup of G of order d.
- 11. Let G be a finite group such that for every divisor d of |G| there exists precisely one subgroup of G of order d. Show that G is cyclic.
- 12. Let G be a finite group such that $g^2 = 1$ for every $g \in G$. Prove that $G \cong \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$.
- 13. For a finite set S determine the structure of the group $\mathcal{P}(S)$ under the operation of symmetric difference.
- 14. Show that there cannot exist an action of the group \mathbb{Z} on the set of all smooth functions $f : \mathbb{R} \to \mathbb{R}$ such that $1 \cdot f = f'$.
- 15. Let G be a finite group such that the action of Aut(G) on G has only two orbits. Prove that G is abelian.
- 16. Show that only the trivial group and the group $\mathbb{Z}/2\mathbb{Z}$ have the identity map as their sole automorphism.
- 17. Prove that there is no group G such that $\operatorname{Aut}(G) \cong \mathbb{Z}$.
- 18. Show that the representation of the group \mathbb{Z} on \mathbb{C}^2 such that $1 \in \mathbb{Z}$ acts by the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ cannot be decomposed in a direct sum of irreducible representations.
- 19. Let V be a vector space of finite dimension. Show that the group \mathbb{Z} has infinitely many nonisomorphic representations on V.
- 20. Show that for every finite group G of order n there is a subset $X \subseteq \mathbb{R}^{n-1}$ such that $G \cong \operatorname{Sym} X$.