Groups and homomorphisms

1. Investigate which of the following pairs (S, *) consisting of a set S and an operation * on the elements of the set S have a structure of a group:

(a) $(\mathbb{N}, +)$	(e) (\mathbb{Z}, \cdot)	(i) $(\mathbb{Q}^{\times}, \cdot)$	(m) (\mathbb{R}^+, \cdot)	(q) $(\mathbb{C}^{\times}, \cdot)$
(b) (\mathbb{N}, \cdot)	(f) $(\mathbb{Q}, +)$	(j) $(\mathbb{Q}^{\times},/)$	(n) $(\mathbb{R}^+,/)$	(r) $(\mathbb{C}^{\times},/)$
(c) $(\mathbb{Z},+)$	(g) $(\mathbb{Q}, -)$	(k) $(\mathbb{R}^{\times},\cdot)$	(o) $(\mathbb{C}, +)$	(s) (S^1, \cdot)
(d) $(\mathbb{Z}, -)$	(h) (\mathbb{Q}, \cdot)	(l) $(\mathbb{R}^+, +)$	(p) (\mathbb{C}, \cdot)	(t) (\mathbb{R}^3, \times)

- 2. Find the elements of finite order in additive groups $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- 3. Find the elements of finite order in multiplicative groups \mathbb{Q}^{\times} , \mathbb{R}^{\times} , \mathbb{C}^{\times} .
- 4. Let G be a commutative group. Show that the set $\{g \in G \mid g \text{ has finite order}\}$ is a subgroup of G.
- 5. Find a counterexample to the statement that if G is any group, then the set $\{g \in G \mid g \text{ has finite order}\}$ is a subgroup of G.
- 6. Let G be a group and g an element in G. Show that the set $\langle g \rangle := \{g^n : n \in \mathbb{Z}\}$ is a subgroup of G.
- 7. Show that $\langle g \rangle$ is infinite if and only if the order of g is infinite. Show that if g has finite order, then its order is equal to the order of $\langle g \rangle$.
- 8. Which of the following maps are group homomorphisms? Which of them are injective? What are their images?
- 9. Let G be a group and T a set. Show how to define an injective group homomorphism $G \to G^T$.
- 10. Let G be a group and $g \in G$. Show that if $g^n = 1$, then the order of g divides the number n. Find an example when these two numbers are different.
- 11. Let $f: G \to H$ be a group homomorphism and let the element $g \in G$ have finite order. Show that f(g) has finite order and that the order of f(g) divides the order of g.
- 12. Show that the matrices of the form $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ where $x, y \in \mathbb{R}$ and $x \neq 0$ or $y \neq 0$ form a group under the operation of matrix multiplication. Show that this group is isomorphic to the group \mathbb{C}^{\times} . Determine which matrix operations correspond to $z \mapsto \overline{z}$ and $z \mapsto |z|$.
- 13. Show that the matrices of the form $\begin{pmatrix} z \\ -w \end{pmatrix}^{w} = z$ we \mathbb{C} and $z \neq 0$ or $w \neq 0$ form a group under the operation of matrix multiplication. We denote this group by \mathbb{H}^{\times} .
- 14. For the following pairs of groups G and H determine if G is isomorphic to H:
 - (a) $(\mathbb{Q}, +)$ and $(\mathbb{R}, +)$ (d) $(\mathbb{Q}, +)$ and $(\mathbb{Q} \times \mathbb{Q}, +)$ (g) $(\mathbb{C}^{\times}, \cdot)$ and $(\mathbb{R}, +)$ (b) $(\mathbb{R}, +)$ and (\mathbb{R}^+, \cdot) (e) $(\mathbb{R}^{\times}, \cdot)$ and $(\mathbb{R}, +)$ (h) $(\mathbb{C}^{\times}, \cdot)$ and $(\mathbb{R}^{\times}, \cdot)$ (c) $(\mathbb{Z}, +)$ and $(\mathbb{Z} \times \mathbb{Z}, +)$ (f) $(\mathbb{R}^{\times}, \cdot)$ and $(\mathbb{C}, +)$ (i) $(\mathbb{H}^{\times}, \cdot)$ and $(\mathbb{C}^{\times}, \cdot)$
- 15. Let G be a group. Is G isomorphic to G° ?

16. Define the following matrices:

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Prove that the eight matrices $\pm 1, \pm I, \pm J, \pm K$ form a finite subgroup of \mathbb{H}^{\times} . We denote this group by Q.

- 17. Let S be a set. Prove that the power set $\mathcal{P}(S)$ with the operation $A\Delta B := (A B) \cup (B A)$ has a structure of a group (you may assume associativity).
- 18. Prove that if a and b are elements of a group G, then ab and ba have the same order.
- 19. Let G be a group with elements $a, b \in G$ which satisfy $a^2 = b^2$ and abab = 1. Show that a and b must have finite order.
- 20. Let G be a finite group. Show that there exists a natural number n such that $g^n = 1$ for all $g \in G$.
- 21. Let G be a finite group. Show that the only homomorphism $\mathbb{Q} \to G$ is the trivial one.
- 22. Pick any two groups from the following list¹ and classify all the homomorphisms between them: \mathbb{Z} , $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$, S_3 , \mathbb{Q} . Determine which ones are isomorphisms.
- 23. Prove that an infinite group is cyclic, if and only if it is isomorphic to all of its subgroups except the trivial one $\{e\}$.
- 24. Does there exist a proper subgroup of \mathbb{Q} which is isomorphic to \mathbb{Q} ? Does there exist a proper subgroup of \mathbb{R} which is isomorphic to \mathbb{R} ?
- 25. Let G be a group and $g \in G$ an element of order 15. Show that the equation $x^7 = g$ has a solution in G.

Normal subgroups and quotients

- 1. Show that any subgroup of index 2 has to be normal.
- 2. For the following pairs of groups G and H draw the cosets of H in G:
 - (a) \mathbb{Z} and $6\mathbb{Z}$ (c) \mathbb{C}^{\times} and S^1 (e) \mathbb{C}^{\times} and \mathbb{R}^{\times} (b) \mathbb{R}^{\times} and $\langle -1 \rangle$ (d) \mathbb{C}^{\times} and \mathbb{R}^+ (f) \mathbb{C}^{\times} and C_7
- 3. For the following pairs of groups G and H check if H is a normal subgroup of G and in the case it is try to determine the quotient G/H:
 - (a) GL(2) and SL(2)(f) \mathbb{C} and \mathbb{Z} (k) \mathbb{C}^{\times} and \mathbb{R}^{\times} (b) \mathbb{R} and \mathbb{Z} (g) \mathbb{R}^{\times} and $\langle -1 \rangle$ (l) \mathbb{C}^{\times} and C_n (c) \mathbb{R} and \mathbb{Q} (h) \mathbb{R}^+ and $\langle 2 \rangle$ (m) \mathbb{C}^{\times} and $\langle 2 \rangle$ (d) \mathbb{Q} and \mathbb{Z} (i) \mathbb{C}^{\times} and S^1 (n) S_3 and any subgroup of S_3 (e) \mathbb{C} and \mathbb{R} (j) \mathbb{C}^{\times} and \mathbb{R}^+ (o) Q and any subgroup of Q
- 4. Find a few examples of groups G with a normal subgroup $N \subseteq G$ such that $G \ncong N \times G/N$.
- 5. Let H be a subgroup of G. Show that H is normal if and only if the sets of left and right cosets of H coincide.
- 6. Let N be a normal subgroup of G, and let $\pi : G \to G/N$ be the canonical homomorphism. Fix a homomorphism $f: G \to H$:

Show that there exists a homomorphism $\overline{f}: G/N \to H$ such that $f = \overline{f} \circ \pi$ if and only if $N \subseteq \ker f$:

Is it possible to find two different functions $G/N \to H$ both of which when composed with π give f?

- 7. Using the previous problem, show that there are n homomorphisms $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.
- 8. If every subgroup of a finite group G is normal, must G be abelian?

Group actions

- 1. Fix a set S. Show that there is a bijection {partitions of the set S} \rightarrow {equivalence relations on the set S} which maps a partition $\{P_{\alpha}\}_{\alpha \in A}$ into the relation $x \sim y$ if x and y belong to the same P_{α} .
- 2. Let S be a set and $\{P_{\alpha}\}_{\alpha \in A}$ a partition of S. Show that there is a group action on S whose orbits are precisely the sets P_{α} .
- 3. Let S be a set with an equivalence relation. Show that there is a group G and an action of G on S such that $x \sim y$ if and only if there exists $g \in G$ such that $g \cdot x = y$.
- 4. Let the group G act on the set X and denote by Y^X the set of all functions from X to Y. Show that the rule $(g \cdot f)(x) := f(g^{-1} \cdot x)$ defines an action of G on Y^X .
- 5. Let G be a group. Show that Aut(G) acts on G by the rule $f \cdot g := f(g)$. Does G act on Aut(G)?
- 6. Prove that the rule $f \cdot S := f(S)$ defines an action of the group S_X on the set $\mathcal{P}(X)$. Determine the orbits and stabilizers.
- 7. Determine the orbits and stabilizers of the following group actions:

(a) \mathbb{R} acts on \mathbb{R}^2 by rotations	(e) S^1 acts on \mathbb{C} by multiplication
(b) \mathbb{Z} acts on \mathbb{R} by translations	(f) $\operatorname{GL}(2)$ acts on \mathbb{R}^2 by left multiplication
(c) \mathbb{R} acts on \mathbb{C} by addition	(g) SL(2) acts on \mathbb{R}^2 by left multiplication
(d) \mathbb{R}^+ acts on \mathbb{C} by multiplication	(h) $SL(2)$ acts on $GL(2)$ by left multiplication

- 8. Let S be the set of solutions of the differential equation $\ddot{x}(t) = -x(t)$ which models the motion of a simple harmonic oscillator. Every solution is a linear combination of the functions $\cos t$ and $\sin t$ and it is completely determined by two numbers x(0) and $\dot{x}(0)$ which correspond to the initial position and the initial velocity of the particle. Explicitly write down the function $F \colon \mathbb{R}^2 \to S$ which maps $(x_0, v_0) \in \mathbb{R}^2$ to the unique solution $F_{x_0,v_0} \in S$ with initial position x_0 and initial velocity v_0 . Show that F is an isomorphism of vector spaces.
- 9. Show that the rule $(\lambda \cdot x)(t) = x(t + \lambda)$ defines an action of the additive group \mathbb{R} on S. Using the isomorphism F we can translate this action to an action of \mathbb{R} on \mathbb{R}^2 . Describe explicitly what we get.
- 10. Determine the orbits and stabilizers of the previously defined action of \mathbb{R} on S.
- 11. Let S be the set of solutions of the differential equation $\ddot{x}(t) = 1$ which models the motion of a particle in acceleration. Determine the orbits and stabilizers of the time translation action of \mathbb{R} on S.
- 12. Let G be a group with a subgroup H of finite index. Prove that G has a normal subgroup N of finite index contained in H. What can you say about the index of N?
- 13. If G is a finitely generated group, prove that there are at most finitely many subgroups of index n in G.
- 14. Let G be a group of odd order and $g \in G$ an element which is not the identity. Show that g and g^{-1} are not conjugate.
- 15. Find all finite groups that have exactly two conjugacy classes.

Sylow theorems

- 1. Show that $|G| = p^k$ for some prime $p \iff$ order of every element of G is a power of p.
- 2. Show that there is no simple group of order 200.
- 3. Show that every group of order 340 has a normal cyclic subgroup of order 85.
- 4. Compute the number of elements of order 7 in a simple group of order 168.
- 5. Prove there is no simple group of order 351.
- 6. Calculate the number of Sylow 3-subgroups and the number of Sylow 5-subgroups of S_5 . Check that the numbers you obtain are consistent with Sylow theorems.
- 7. If p is a prime number, find all Sylow p-subgroups of S_p .
- 8. Prove that if p is a prime number, then $(p-1)! \equiv -1 \pmod{p}$.
- 9. Prove Wilson's theorem: n is a prime number $\iff (n-1)! \equiv -1 \pmod{n}$.
- 10. Show that every group of order 48 has a normal subgroup of order 8 or 16.
- 11. Let H be a proper subgroup of G. If $|G/H| \leq 4$, show that G is not simple unless G is $\mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/3\mathbb{Z}$.
- 12. Let |G| = p where p is a prime number $\implies G$ is simple.
- 13. Let |G| = pq where p, q are prime numbers $\implies G$ is not simple.
- 14. Let |G| = pqr where p, q, r are prime numbers $\implies G$ is not simple. Break this into cases:
 - (a) $|G| = p^3$
 - (b) $|G| = p^2 q$, where $p \neq q$
 - (c) |G| = pqr, where p, q, r are all different
- 15. Find all simple groups of order |G| < 60.
- 16. Assume that the class equation of G is 60 = 1 + 20 + 15 + 12 + 12. Prove that G has to be simple.
- 17. Prove there is no simple group of order 132.
- 18. Prove there is no simple group of order 495.
- 19. Prove there is no simple group of order 90.
- 20. Prove that if N is a normal subgroup of G that contains a Sylow p-subgroup of G, then the number of Sylow p-subgroups of N is the same as that of G.
- 21. Show there is only one group of order 1001 up to isomorphism.
- 22. Let *H* be a Sylow *p*-subgroup and let *K* be any *p*-subgroup. Show that if *K* is contained in the normalizer of *H*, then $K \subseteq H$.
- 23. Prove there is no simple group of order 520.
- 24. Show that a group of order 108 has a normal subgroup of order 9 or 27.
- 25. Prove there is no simple group of order 144.
- 26. Assume that no Sylow subgroup of G is normal. Is G simple?
- 27. Suppose that G is an infinite simple group. Show that for every proper subgroup H of G, the index [G:H] is infinite.

Permutations

- 1. Show that if X and Y have the same cardinality, then the groups S_X and S_Y are isomorphic.
- 2. Show that the transpositions (12), (13), ..., (1n) generate S_n .
- 3. Show that the transpositions (12), (23), (34), ..., (n-1n) generate S_n .
- 4. Show that (12) and (12...n) generate S_n if $n \ge 2$.
- 5. Is every power of a cycle in S_n again a cycle?
- 6. Is the subgroup of S_{2n} generated by the transpositions switching 2k-1 and 2k commutative?
- 7. Let σ be an odd permutation in S_n . Determine when the equation $\sigma x = x\sigma^4$ can be solved.
- 8. Prove that (12345) and (12354) are conjugate in S_5 , but not in A_5 .
- 9. Prove that the symmetric group S_n is a maximal subgroup of S_{n+1} .
- 10. Show that if G is a subgroup of S_n which contains an odd permutation, then $G \cap A_n$ is of index 2 in G.
- 11. Show that if G is a subgroup of S_n of index 2, then $G = A_n$.
- 12. Show that S_{m+n} has a subgroup of order mn.
- 13. Show that the number of elements of order 2 in S_n is odd.
- 14. For every $\tau \in S_n$ calculate the parity of the permutation of the set S_n given by $\sigma \mapsto \tau \sigma$.
- 15. For every $\tau \in S_n$ calculate the parity of the permutation of the set S_n given by $\sigma \mapsto \tau \sigma \tau^{-1}$.
- 16. Is there a subgroup of order 15 in A_5 ?
- 17. Is there an integer n > 1 such that every group of order at most n can be embedded in S_{n-1} ?
- 18. Prove that every finite group G of order n can be embedded in A_{n+2} .
- 19. Can S_n be embedded in A_{n+1} if n > 2?
- 20. Show that the number (a + b + c)! is divisible by $a! \cdot b! \cdot c!$.
- 21. Show that the 15 puzzle is unsolvable:

1	2	3	4		1	2	3	4
5	6	7	8	?	5	6	7	8
9	10	11	12		9	10	11	12
13	14	15			13	15	14	

- 22. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n . For every permutation $\sigma \in S_n$ we denote by A_σ the matrix in the standard basis of the linear operator which sends e_i to $e_{\sigma(i)}$. Show that $\sigma \mapsto A_\sigma$ is an injective group homomorphism $S_n \to \operatorname{GL}(n)$. What is det A_σ ? What is $\operatorname{Tr} A_\sigma$?
- 23. Does there exist an embedding $A_n \to SL(n)$?
- 24. Show that the permutations $\sigma\tau$ and $\tau\sigma$ have the same number of fixed points.

Representations

- 1. When is the representation of the group $\mathbb{Z}/n\mathbb{Z}$ by rotations of the plane \mathbb{R}^2 irreducible?
- 2. Decompose the standard representation of the group $\mathbb{Z}/n\mathbb{Z}$ acting on \mathbb{C}^2 into irreducible representations.
- 3. Is the standard representation of the group D_n irreducible?
- 4. Show that the representation of S_4 as the rotational symmetry group of a cube is irreducible.
- 5. Show that the representation of A_4 as the rotational symmetry group of a tetrahedron is irreducible.
- 6. Show that the representation of the group Q by matrices

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

is irreducible.

7. Determine the conjugacy classes and the character tables of the following groups:

(a)
$$\mathbb{Z}/n\mathbb{Z}$$
 (c) S_4 (e) Q (g) D_5

(b)
$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
 (d) A_4 (f) D_4 (h) D_6

- 8. Calculate the character table of a noncommutative group of order 21.
- 9. Calculate the character table of a noncommutative group of order 55.
- 10. Determine the decomposition of the following complex representations into irreducible ones:
 - (a) the standard representation of $\mathbb{Z}/n\mathbb{Z}$ acting on \mathbb{C}^2
 - (b) the standard representations of A_4 and S_4
 - (c) the representation of S_4 as the full symmetry group of a tetrahedron
- 11. Decompose the restriction of each irreducible character of S_4 into irreducible characters of A_4 . Do the same for the cyclic subgroups of Q as well as the rotational subgroups of D_4 , D_5 , and D_6 .
- 12. Let χ be a character of dimension d. Show that the modulus of $\chi(g)$ is at most d. When is it equal to d?
- 13. Show that every p-group has a 1-dimensional representation which is not trivial.
- 14. Calculate the character table of a noncommutative group of order 27.
- 15. Let ρ be an irreducible representation of a group G which is not trivial. Show that $\sum_{g \in G} \rho(g) = 0$.
- 16. What can be said about a group that has exactly three irreducible characters, of dimensions 1, 2, and 3, respectively?
- 17. Let ρ be a representation of a group G on a vector space V. Show that the linear span of an orbit $G \cdot v$ is an invariant subspace of V.
- 18. Is the restriction of ρ to the linear span of an orbit $G \cdot v$ always irreducible?
- 19. Let ρ be an irreducible representation of a group G on a vector space V. Show that V is the linear span of some orbit $G \cdot v$.
- 20. Decompose the standard representation of the group S_n into irreducible ones.
- 21. What are the one-dimensional characters of the group S_n ?

Additional problems

- 1. Show that a noncommutative group of order p^3 has exactly p + 4 normal subgroups.
- 2. Let H be a subgroup of index n in a group G. Show that there is a homomorphism $f: G \to S_n$ such that $H = f^{-1}(S_{n-1})$.
- 3. Let G be the set of all invertible $n \times n$ matrices each of whose rows and columns sums to 1. Show that G is a subgroup of GL(n) isomorphic to GL(n-1).
- 4. Let G be a commutative finite group which contains two distinct elements of order 2. Show that then 4 divides |G|. Is this true if G is not commutative?
- 5. Let G be a finite group and let $\varphi \colon G \to \mathbb{C}^{\times}$ be a nontrivial homomorphism. Calculate $\sum_{g \in G} \varphi(g)$.
- 6. Show that the group $\mathbb{Z}/4\mathbb{Z}$ is not isomorphic to a product of simple groups. Do the same for S_3 .
- 7. Show that if G is a noncommutative finite group, then $|Z(G)| \leq \frac{1}{4}|G|$.
- 8. For $\sigma \in S_m$ and $\tau \in S_n$ calculate the parity of the permutation of $\{1, \ldots, m\} \times \{1, \ldots, n\}$ which maps (i, j) to $(\sigma(i), \tau(j))$.
- 9. Let σ be a product of all the elements of S_n in some order. Is σ even or odd?
- 10. Let G be a p-group. Show that for every divisor d of |G| there exists a normal subgroup of G of order d.
- 11. Let G be a finite group such that for every divisor d of |G| there exists precisely one subgroup of G of order d. Show that G is cyclic.
- 12. Let G be a finite group such that $g^2 = 1$ for every $g \in G$. Prove that $G \cong \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$.
- 13. For a finite set S determine the structure of the group $\mathcal{P}(S)$ under the operation of symmetric difference.
- 14. Show that there cannot exist an action of the group \mathbb{Z} on the set of all smooth functions $f : \mathbb{R} \to \mathbb{R}$ such that $1 \cdot f = f'$.
- 15. Let G be a finite group such that the action of Aut(G) on G has only two orbits. Prove that G is abelian.
- 16. Show that only the trivial group and the group $\mathbb{Z}/2\mathbb{Z}$ have the identity map as their sole automorphism.
- 17. Prove that there is no group G such that $\operatorname{Aut}(G) \cong \mathbb{Z}$.
- 18. Show that the representation of the group \mathbb{Z} on \mathbb{C}^2 such that $1 \in \mathbb{Z}$ acts by the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ cannot be decomposed in a direct sum of irreducible representations.
- 19. Let V be a vector space of finite dimension. Show that the group \mathbb{Z} has infinitely many nonisomorphic representations on V.
- 20. Show that for every finite group G of order n there is a subset $X \subseteq \mathbb{R}^{n-1}$ such that $G \cong \operatorname{Sym} X$.