Automorphisms of C^*-algebras and von Neumann algebras

Soumyashant Nayak

University of Pennsylvania, Philadelphia

1 April, 2014
Lemma 1

If α is an automorphism of a C^*-algebra \mathcal{A} acting on a Hilbert space and α is weak-operator bicontinuous on the unit ball of \mathcal{A} (i.e. α is ultra-weakly bicontinuous on \mathcal{A}) then α has an extension $\bar{\alpha}$ which is an automorphism of \mathcal{A}^-, $\bar{\alpha}$ is ultra-weakly bicontinuous on \mathcal{A}^-, and $\|\bar{\alpha} - \iota\| = \|\alpha - \iota\|$.

*-representations of self-adjoint operator algebras which have no unitarily equivalent non-zero subrepresentations are called disjoint representations.

Lemma 2

If $\{\phi_{\alpha}\}$ are *-representations of the self-adjoint operator algebra \mathcal{A} then $\{\phi_{\alpha}\}$ consists of mutually disjoint representations if and only if $\phi(\mathcal{A})^- = \bigoplus (\phi_{\alpha}(\mathcal{A})^-)$, where $\phi = \bigoplus \phi_{\alpha}$.
Lemma 3

If \(\alpha \) is an automorphism of a \(C^* \)-algebra \(\mathfrak{A} \) acting on a Hilbert space, and \(\| \alpha - \iota \| < 2 \), then \(\alpha \) extends to an automorphism \(\tilde{\alpha} \) of \(\mathfrak{A}^- \), leaving each element of the center of \(\mathfrak{A}^- \) fixed, such that \(\| \tilde{\alpha} - \iota \| = \| \alpha - \iota \| \).

With \(E' \) a projection in \(\mathfrak{A}' \), and \(\phi \) defined by \(\phi(A) = \alpha(A)E' \), for \(A \in \mathfrak{A} \), \((\phi \oplus \iota)(\mathfrak{A}) \) acting on \(E'(\mathcal{H}) \oplus \mathcal{H} \) does not have strong-operator closure \(\phi(\mathfrak{A})^- \oplus \mathfrak{A}^- \).
Lemma 4

Let α be an inner automorphism of a von Neumann algebra \mathcal{R}, for which $\|\alpha - \iota\| < 2$. Then there is a unitary operator U in \mathcal{R}, with spectrum $\sigma(U)$ in the half-plane $\{z : \text{Re}z \geq \frac{1}{2} \left(4 - \|\alpha - \iota\|^2 \right)^{\frac{1}{2}} \}$, such that $\alpha(U) = UAU^*$ for all A in \mathcal{R}.

Step 1 : Prove the result when $\mathcal{R} = \mathcal{M}_n$, the space of all operators on an n-dimensional Hilbert space, n being an integer. This involves proving that the convex hull of the eigenvalues of U is at a distance at least $\frac{1}{2} \left(4 - \|\alpha - \iota\|^2 \right)^{\frac{1}{2}}$ from the origin.

Step 2 : For any k such that $0 < k < \frac{1}{2} \left(4 - \|\alpha - \iota\|^2 \right)^{\frac{1}{2}}$, prove that there is a U implementing α such that $\sigma(U)$ is in the half-plane $\{z : \text{Re}z \geq k \}$. This is achieved by suitably approximating U by linear combinations of its spectral projections and appealing to Step 1. (Proof by contradiction)

Step 3 : Use a limiting argument to construct U satisfying the required properties in the theorem.
For $a \in [0, \frac{1}{2}\pi)$, define $S_a = \{\exp it : -a \leq t \leq a\}$. Let b be such that $2 \sin b = \|\alpha - \iota\|$. Choose real numbers c, δ such that $b < c < \frac{1}{2}\pi$ and $0 < \delta < \frac{1}{2} \cos c$, and let $\epsilon_n = (c - b)(1 - \delta)^{n-1}$. Let E and F be spectral projections for U_n corresponding to the Borel sets

$\{e^{it} : b + (1 - 2\delta)\epsilon_n \leq t \leq b + \epsilon_n\},$

$\{e^{it} : -b - \epsilon_n \leq t \leq -b - (1 - 2\delta)\epsilon_n\}.$

$C_E C_F = 0$ and thus, there is a central projection $Q \in \mathcal{R}$ such that $E \leq Q$ and $F \leq I - Q$.

The unitary operator $U_{n+1} := \{e^{-i\delta\epsilon_n}Q + e^{i\delta\epsilon_n}(I - Q)\}U_n$ has spectrum in $S_{b+\epsilon_{n+1}}$ and implements the automorphism.
Definition:
An automorphism α of a C^*-algebra \mathcal{A} acting on a Hilbert space \mathcal{H} is said to be:

(i) **extendable** if there is an automorphism of the weak-operator closure of \mathcal{A} equal to it on \mathcal{A}.

(ii) **spatial** if there is a unitary operator U on \mathcal{H} such that $\alpha(A) = UAU^*$ for each $A \in \mathcal{A}$.

(iii) **weakly-inner** if it is spatial and U can be chosen in the weak-operator closure of \mathcal{A}.
If ϕ is a faithful representation of \mathcal{A} on a Hilbert space, $\epsilon_\phi(\mathcal{A})$, $\sigma_\phi(\mathcal{A})$, and $\iota_\phi(\mathcal{A})$, denote the groups of those elements α of the automorphism group of \mathcal{A} for which $\phi\alpha\phi^{-1}$ is extendable, spatial, and weakly-inner, respectively.

$\pi(\mathcal{A})$ denotes the intersection of all the subgroups $\iota_\phi(\mathcal{A})$ and refer to its elements as permanently weakly (for brevity, $\pi-$) inner automorphisms of \mathcal{A}.
Lemma 5

If \(t \rightarrow \alpha(t) \) is a norm-continuous one-parameter group of automorphisms of a \(C^* \)-algebra \(\mathcal{A} \) acting on a Hilbert space \(\mathcal{H} \) then each \(\alpha(t) \) is weakly-inner.

\[
\alpha(t)[AB] = AB + t\delta(AB) + O(t^2) = \alpha(t)[A]\beta(t)[B] = AB + t(A\delta(B) + \delta(A)B) + O(t^2).
\]
Thus \(\delta \), the generator of the one-parameter group is a derivation.

By the Derivation Theorem, we have that \(\delta = \text{ad } iA|\mathcal{A} \) with \(A \in \mathcal{A}^- \) (and \(A = A^* \) as \(\delta(B^*) = \delta(B)^* \)).

\[
\alpha(t)[B] = U_t B U_{-t}, \text{ with } U_t (= \exp iA) \text{ a unitary operator in } \mathcal{A}^-.
\]
Lemma 6

If \mathcal{A} is a C^*-algebra and U a unitary operator acting on a Hilbert space \mathcal{H} such that $\alpha(A) = UAU^*$ lies in \mathcal{A} for all A in \mathcal{A} and $\Re a > 0$ for each a in $\sigma(U)$, then α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathcal{A})$ and is π-inner.

Let $\bar{\alpha}$ be the extension of α to $B(\mathcal{H})$ defined by $\bar{\alpha}(B) = UBU^*$. We may choose H self-adjoint with $\sigma(H)$ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ such that $U = \exp iH$. Then, $\bar{\alpha} = \exp(i\text{ad}H)$.

$\text{ad} iH$ has spectrum in $\{it : |t| \leq r\}$, where $2\|H\| = r < \pi$, by choice of H. Thus, $\bar{\alpha}$ has spectrum in $\{\exp it : |t| \leq r\}$.

$\bar{\alpha}^s = \exp(\text{ad} isH)$ is an automorphism of $B(\mathcal{H})$, for all real s.

$$\bar{\alpha}^s = \frac{1}{2\pi i} \int_C g_s(z)(z - \bar{\alpha})^{-1} \, dz$$

so that $\bar{\alpha}^s$ leaves \mathcal{A} invariant. (use Runge’s theorem to approximate $(z_0 - z)^{-1}$ by polynomials where $z_0 \in C$)
Theorem 7

If α is an automorphism of a C^*-algebra \mathcal{A} and $\|\alpha - \iota\| < 2$, then α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathcal{A})$. Such subgroups generate $\gamma(\mathcal{A})$, the connected component of ι in $\alpha(\mathcal{A})$ with its norm topology, as a group; and $\gamma(\mathcal{A})$ is an open subgroup of $\alpha(\mathcal{A})$. Each element of $\gamma(\mathcal{A})$ is π-inner.

Pass to the reduced atomic representation of \mathcal{A}. \mathcal{A}^- is a type I von Neumann algebra. $\bar{\alpha}$ is a $*$-automorphism which preserves the center and hence is implemented by a unitary in \mathcal{A}^-. Use previous theorems to conclude that α lies on a norm-continuous one-parameter subgroup of $\alpha(\mathcal{A})$.
Corollary 8

Each norm-continuous representation of a connected topological group by automorphisms of a C*-algebra has range consisting of π-inner automorphisms.

Corollary 9

If \mathcal{A} is a C*-algebra which has a faithful representation φ as a von Neumann algebra then $\iota_0(\mathcal{A}) = \gamma(\mathcal{A}) = \pi(\mathcal{A}) = \iota_\varphi(\mathcal{A})$; and each element of $\gamma(\mathcal{A})$ lies on some norm-continuous one-parameterr subgroup of $\alpha(\mathcal{A})$.

Let \mathcal{A} be a C*-algebra, φ a faithful representation of \mathcal{A}. Then $\gamma(\mathcal{A}) \subseteq \pi(\mathcal{A}) \subseteq \iota_\varphi(\mathcal{A}) \subseteq \sigma_\varphi(\mathcal{A}) \subseteq \epsilon_\varphi(\mathcal{A}) \subseteq \alpha(\mathcal{A})$. Thus each of the above groups contains the open ball, with center ι and radius 2, in $\alpha(\mathcal{A})$. Each of these groups is open, hence closed, and the quotient of any of them by a smaller one is discrete.

The subgroups $\gamma(\mathcal{A}), \pi(\mathcal{A}), \iota_0(\mathcal{A})$ of $\alpha(\mathcal{A})$ are normal.
Let $\mathfrak{A} := C(X) \otimes \mathcal{M}_n$, where X is a compact Hausdorff space and \mathcal{M}_n is the algebra of $n \times n$ complex matrices. The center \mathfrak{C} of \mathfrak{A} is the set of matrices whose only non-zero entries consist of a single A in $C(X)$ and as continuous functions on X with values in \mathcal{M}_n.

$\pi(\mathfrak{A})$ consists of precisely those automorphisms of \mathfrak{A} which leave each element of \mathfrak{C} fixed.

With $\alpha \in \pi(\mathfrak{A})$ and ρ a point of X, a homomorphism φ_ρ of $C(X) \otimes \mathcal{M}_n$ onto \mathcal{M}_n is determined by $\varphi_\rho(A \otimes B) = \rho(A)B$.

Define $\alpha(\rho)(B) := \varphi_\rho(\alpha(I \otimes B))$. Then $\alpha(\rho)$ is an isomorphism of \mathcal{M}_n into \mathcal{M}_n. $\rho \to \alpha(\rho)$ is norm-continuous. Conversely, a norm-continuous map $\rho \to \alpha(\rho)$ from X to $\alpha(\mathcal{M}_n)$ gives rise to an element of $\pi(\mathfrak{A})$.

The correspondence between elements of $\pi(\mathfrak{A})$ and continuous mappings of X into $\alpha(\mathcal{M}_n)$ is a group isomorphism when this second set is provided with pointwise multiplication through the group structure of $\alpha(\mathcal{M}_n)$.
\[\alpha(\mathcal{M}_n) \approx U(n)/T_1, \] where \(U(n) \) is the group of unitary operators in \(\mathcal{M}_n \) and \(T_1 \) is the circle group.

Theorem 10 (Covering Homotopy Theorem)

Let \(\mathcal{B}' \) be a bundle over \(X' \). Let \(X \) be a \(C_\sigma \) space (any covering has a countable subcovering), let \(f_0 : X \to B' \) be a map, and let \(\bar{f} : X \times I \to X' \) be a homotopy of \(p'f_0 = \bar{f}_0 \). Then there is a homotopy \(f : X \times I \to B' \) of \(f_0 \) covering \(\bar{f} \) (i.e. \(p'f = \bar{f}_0 \)), and \(f \) is stationary with \(f \).

\[\gamma(A) \subseteq \iota_0(A) \subseteq \pi(A). \]

\(\pi(A)/\gamma(A) \) is the group of homotopy classes of mappings of \(X \) into \(U(n)/T_1 \).

\(\iota_0(A)/\gamma(A) \) is the group of homotopy of classes of mappings of \(X \) into \(U(n)/T_1 \) which can be lifted to \(U(n) \).
If X is contractible, then each continuous map of X is homotopic to a constant mapping. Thus $\gamma(\mathcal{U}) = \iota_0(\mathcal{U}) = \pi(\mathcal{U})$.

If $X = U(n)/T_1$, then $\gamma(\mathcal{U}) \subsetneq \iota_0(\mathcal{U}) \subsetneq \pi(\mathcal{U})$.

$\iota_0(\mathcal{U}) \subsetneq \pi(\mathcal{U})$ as $\pi_1(U(n)/T_1) \approx \mathbb{Z}_n$ has torsion but $\pi_1(U(n)) \approx \mathbb{Z}$ has no torsion. Thus, the identity map from $U(n)/T_1$ to itself has no lifting to $U(n)$.

$\gamma(\mathcal{U}) \subsetneq \iota_0(\mathcal{U})$ as $p \circ i \circ r$ is not nulhomotopic where $U(n)/T_1 \approx SU(n)/\mathbb{Z}_n \xrightarrow{r} SU(n) \xrightarrow{i} U(n) \xrightarrow{p} U(n)/T_1$, r being the map that takes $U\mathbb{Z}_n$ to U^n, i being the inclusion map and p being the projection map.
References:

- *The Topology of Fibre Bundles* - Norman Steenrod