Cover-inclusive Dyck tilings, definition

A tiling of a skew lattice shape between 2 Dyck paths.

with Dyck tiles
(2-bin Black Dyck path)

such that: For a Dyck tile the cell entries above (i.e. has a black outline color) have the same parity as the order of a box in the usual tile, then the horizontal extent of that tile is the subset of the horizontal extent of second tile.

Example: all cover-inclusive Dyck tilings of a given shape.

For a Dyck tile T of shape $d(T) = 2\lambda$, we define $\delta(T) = \delta(\lambda, \mu)$ the discrepancy between λ and μ in number of places where λ has a Dyck step while μ has an Up step within the Running Distance between the Dyck path of λ and μ. Let $\lambda = \{(i, j) \in \mathbb{Z}^2 \mid 0 \leq i \leq j \}$ be the number of unit squares of the skew-shape λ. We define $\varphi(T) = \bigcup T$.

THE MANY FACES AND ASPECTS OF D YCK TILINGS

The many faces and aspects of Dyck tilings

A bijection Φ between 231-avoiding permutations in S_n and Dyck tilings whose lower path is λ_{n-1}, and which contains only one-box tiles (i.e. in particular these correspond to Dyck paths, being determined just by the upper path λ).

Chord Poisets, statistics

The chords of a Dyck path λ are the segments between matching Up and Down steps (matching parentheses in the corresponding balanced parenthesis expression). A chord with a left parenthesis and b right parenthesis is denoted (a, b), and their lengths are written λ_0.

A chord c with a left parenthesis and b right parenthesis is denoted (a, b), and their lengths are written λ_0.

Main Results

With the definitions from Section 3, a cover-inclusive Dyck tile, definition and Chord posets, definitions.

Theorem 1: (Proposition 1 in (Kuo-Wilson 2011)) Let λ be a Dyck path of order α, we have

$$\sum_{\lambda \leq \alpha} \text{Chord}_{\lambda} = \left(\sum_{\lambda \leq \alpha} \text{Chord}_{\lambda}\right) - 1$$

where the sum is over all cover-inclusive Dyck tilings with fixed lower path λ.

Theorem 2: Given a Dyck path λ of order α, we have

$$\text{Chord}_{\lambda} \leq \sum_{\lambda \leq \alpha} \text{Chord}_{\lambda}$$

where λ is the Jordan-Hilbert set (set of extended linear extensions) of the chord poset \mathcal{P} of λ.

Proof: The two Spernerian Dyts \mathcal{T} and \mathcal{D}, defined below, and the ϕ-hook-length formula $e_{\mathcal{T}(\mathcal{D})} = e_{\mathcal{T}(\mathcal{D})}$ are used for Dyck tilings with lower shape λ, \mathcal{T} and \mathcal{D} is a bijection with $\phi(T)$.

Theorem 3: The maps \mathcal{T} and \mathcal{D} are bijections between interval sequences $\mathcal{T}(\mathcal{D})$ such that $\mathcal{T}(\mathcal{D}) \subseteq \mathcal{L}$ and cover-inclusive Dyck tilings of order α.

Bijections: Linear extensions \leftrightarrow Dyck tilings

The bijection: Linear extension \mathcal{L} of P (or $(\mathcal{D}, \mathcal{P})$) \leftrightarrow Dyck tableau \mathcal{T} (or $(\mathcal{D}, \mathcal{T})$).

Algorithm: Let λ be the label of P or $(\mathcal{D}, \mathcal{P})$, and let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$.

Proof: Let λ be the node labeled λ, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathcal{D})$, where λ is the node labeled $\lambda + 1$, let \mathcal{T} be the corresponding tableau $\mathcal{T} = \mathcal{T}(\mathbackslashend{verbatim}