MIDTERM 2

Math 103
10/22/2014
Name:

ID: \qquad
"My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this"

Signature:

Read all of the following information before starting the exam:

- Check your exam to make sure all ?? pages are present.
- You may use writing implements and a single handwritten sheet of 8.5 "x11" paper.
- NO CALCULATORS.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

1	8		7	8	
2	8		8	8	
3	8		9	8	
4	8		10	8	
5	8		11	10	
6	8		12	10	
Total	100				

1. What is $\left.\frac{d}{d x} e^{\tan ^{-1} x}\right|_{x=\sqrt{3}}$?
a. $1 / 4$
b. $\frac{e^{\pi}}{2}$
c. $e^{\pi / 3}$
d. $\frac{e^{\pi / 3}}{2}$
e. $\frac{e^{\pi / 3}}{4}$
f. 1
g. $\frac{e^{\pi / 4}}{3}$
h. $\frac{e^{\frac{\pi}{4} / 4}}{2}$
2. What values should a and b have so that

$$
f(x)= \begin{cases}a x+b & \text { if } x<1 \\ \ln x & \text { if } x \geq 1\end{cases}
$$

is differentiable everywhere.
a. $a=0, b=-1$
b. $a=0, b=0$
c. $a=0, b=1$
d. $a=1, b=-1$
e. $a=1, b=0$
f. $a=1, b=1$
g. $a=e, b=-1$
h. $a=e, b=1$
3. If $f(x)=\frac{x}{\sin x}$, what is $f^{\prime}(\pi / 6)$?
a. $\frac{2 \sqrt{3}}{3}-\frac{\pi}{9}$
b. $\frac{2 \sqrt{3}}{3}+\frac{\pi}{9}$
c. $\frac{\pi}{9}-\frac{2 \sqrt{3}}{3}$
d. $\frac{\sqrt{3}}{16}-\frac{3 \pi}{16}$
e. $\frac{\sqrt{3}}{16}+\frac{3 \pi}{16}$
f. $\frac{3 \pi}{16}-\frac{\sqrt{3}}{16}$
g. $2-\frac{\pi \sqrt{3}}{3}$
h. $\frac{\pi \sqrt{3}}{3}-2$
4. The chart below gives the functions f, f^{\prime}, g, and g^{\prime} at several values. What is
$\frac{d}{d x} f(x g(x))$

x	1	2	3	4
$\mathrm{f}(\mathrm{x})$	1	2	3	4
$\mathrm{f}^{\prime}(\mathrm{x})$	2	1	3	1
$\mathrm{~g}(\mathrm{x})$	2	1	3	1
$\mathrm{~g}^{\prime}(\mathrm{x})$	4	3	2	1

a. 1
b. 2
c. 3
d. 4
e. 6
f. 8
g. 9
h. 12
5. Find $\left.\frac{d}{d x}(x \cos |x|)\right|_{x=0}$. (Remember this means the derivative of $x \cos |x|$ at the point $x=0$.)
a. $-\pi$
e. 1
b. -2
f. 2
c. -1
g. π
d. 0
h. DNE
6. The graph of $y=a x^{3}-2 a x^{2}-x+1$ is a curve such that the tangent line at $x=2$ has slope 11 . What is a ?
a. -2
e. 2
b. -1
f. 3
c. 0
g. 4
d. 1
h. There is no such value a
7. What is the slope of the tangent line to the curve $x^{2} y^{3}-y^{2}=4 x-4$ at $(1,1)$?
a. 0
b. $1 / 4$
c. $1 / 3$
d. $1 / 2$
e. $2 / 3$
f. 1
g. 2
h. 3
8. What is the derivative of $\frac{\sqrt{e^{x}\left(x^{2}+4\right)}}{(x-1)^{2}(x+1)^{3}}$ at $x=0$?
a. -2
b. -1
c. $-1 / 2$
d. $-1 / 4$
e. 2
f. 1
g. $1 / 2$
h. $1 / 4$
9. Which of the following values is closest to $\sqrt[3]{124}$? (It may help to remember that $\sqrt[3]{125}=5$.)
a. 5
b. $5-1 / 125$
c. $5-1 / 75$
d. $5-1 / 25$
e. $5+1 / 125$
f. $5+1 / 75$
g. $5+1 / 25$
h. 4
10. A plane is flying horizontally at an altitude of 1 mile and a speed of 300 miles per hour. At one point in its trip, the plane passes directly over a radar station. Soon after, the distance from the plane to the radar station is 2 miles; at this moment, what is the rate at which the distance from the plane to the radar station is increasing?
a. $\frac{150}{\sqrt{3}} \mathrm{mph}$
e. $\frac{30}{\sqrt{3}} \mathrm{mph}$
b. 150 mph
f. $\frac{300}{\sqrt{3}} \mathrm{mph}$
c. $150 \sqrt{3} \mathrm{mph}$
g. $300 \sqrt{3} \mathrm{mph}$
d. $30 \sqrt{3} \mathrm{mph}$
h. 200 mph

11. Consider the function $g(x)=x^{5}+2 x^{3}+1$. What is $\left.\frac{d}{d x} g^{-1}(x)\right|_{x=4}$? (That is, the derivative of $g^{-1}(x)$ at $x=4$. It is helpful to notice that $g(1)=4$.)
12. $L(x)$ is a new function with the property that $\frac{d}{d x} L(x)=\ln (\ln (x))$. What is $\frac{d}{d x} L\left(e^{e^{x}}\right)$?

