MIDTERM 2

Math 103 10/22/2014

Name:

ID: _____

"My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this"

Signature:

Read all of the following information before starting the exam:

- Check your exam to make sure all ?? pages are present.
- You may use writing implements and a single handwritten sheet of 8.5"x11" paper.
- NO CALCULATORS.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

1	8	7	8	
2	8	8	8	
3	8	9	8	
4	8	10	8	
5	8	11	10	
6	8	12	10	
Total	100			

1. What is $\frac{d}{dx}e^{\tan^{-1}x}|_{x=\sqrt{3}}$? a. 1/4 e. $\frac{e^{\pi/3}}{4}$ b. $\frac{e^{\pi}}{2}$ f. 1 c. $e^{\pi/3}$ g. $\frac{e^{\pi/4}}{3}$ d. $\frac{e^{\pi/3}}{2}$ h. $\frac{e^{\pi/4}}{2}$

2. What values should *a* and *b* have so that

$$f(x) = \begin{cases} ax+b & \text{if } x < 1\\ \ln x & \text{if } x \ge 1 \end{cases}$$

is differentiable everywhere.

a. $a = 0, b = -1$	e. $a = 1, b = 0$
b. $a = 0, b = 0$	f. $a = 1, b = 1$
c. $a = 0, b = 1$	g. $a = e, b = -1$
d. $a = 1, b = -1$	h. $a = e, b = 1$

3.	If $f(x) = \frac{x}{\sin x}$, what is $f'(\pi/6)$?	
	a. $\frac{2\sqrt{3}}{3} - \frac{\pi}{9}$	e. $\frac{\sqrt{3}}{16} + \frac{3\pi}{16}$
	b. $\frac{2\sqrt{3}}{3} + \frac{\pi}{9}$	f. $\frac{3\pi}{16} - \frac{\sqrt{3}}{16}$
	c. $\frac{\pi}{9} - \frac{2\sqrt{3}}{3}$	g. $2 - \frac{\pi\sqrt{3}}{3}$
	d. $\frac{\sqrt{3}}{16} - \frac{3\pi}{16}$	h. $\frac{\pi\sqrt{3}}{3} - 2$

4. The chart below gives the functions f, f', g, and g' at several values. What is $\frac{d}{dx}f(xg(x))|_{x=1}$?

$dx^{J} \langle w^{g} \rangle$	(~))	x-	· T ·			
х	1	2	3	4		
f(x)	1	2	3	4		
f'(x)	2	1	3	1		
g(x)	2	1	3	1		
g'(x)	4	3	2	1		
a. 1						e. 6
b. 2						f. 8
c. 3						g. 9
d. 4						h. 12

5. Find $\frac{d}{dx}(x \cos |x|) |_{x=0}$. (Remember this means the derivative of $x \cos |x|$ at the point x = 0.)

a. $-\pi$	е. 1
b2	f. 2
c1	g. π
d. 0	h. DNE

6. The graph of $y = ax^3 - 2ax^2 - x + 1$ is a curve such that the tangent line at x = 2 has slope 11. What is a?

- a. -2e. 2b. -1f. 3c. 0g. 4d. 1h. There
 - h. There is no such value a

 7.	What is the slope of the tangent	line to the curve $x^2y^3 - y^2 = 4x - 4$ at $(1, 1)$?
	a. 0	e. 2/3
	b. 1/4	f. 1
	c. 1/3	g. 2
	d. $1/2$	h. 3

 8.	What is the derivative of	of $\frac{\sqrt{e^x(x^2+4)}}{(x-1)^2(x+1)^3}$ at $x = 0$?
	a2	e. 2
	b1	f. 1
	c1/2	g. $1/2$
	d1/4	h. 1/4

9. Which of the following values is closest to $\sqrt[3]{124}$? (It may help to remember that $\sqrt[3]{125} = 5$.) a. 5 e. 5 + 1/125b. 5 - 1/125 f. 5 + 1/75c. 5 - 1/75 g. 5 + 1/25

h. 4

d. 5 - 1/25

10. A plane is flying horizontally at an altitude of 1 mile and a speed of 300 miles per hour. At one point in its trip, the plane passes directly over a radar station. Soon after, the distance from the plane to the radar station is 2 miles; at this moment, what is the rate at which the distance from the plane to the radar station is increasing?

11. Consider the function $g(x) = x^5 + 2x^3 + 1$. What is $\frac{d}{dx}g^{-1}(x)|_{x=4}$? (That is, the derivative of $g^{-1}(x)$ at x = 4. It is helpful to notice that g(1) = 4.)

12. L(x) is a new function with the property that $\frac{d}{dx}L(x) = \ln(\ln(x))$. What is $\frac{d}{dx}L(e^{e^x})$?