Working with an Example

Like most groups, I'll take $g(t)=t^{2}$ as my example function. So after t seconds, the car has travelled t^{2} miles.

1 hour is 3600 seconds, so after 1 hour the car has travelled (3600) ${ }^{2}$ miles. The distance travelled after 1 hour is $h(1)$, so

$$
h(1)=(3600)^{2} .
$$

After 2 hours we've travelled for $2 \cdot 3600=7200$ seconds, so we've travelled $(7200)^{2}$ miles. The distance travelled after 2 hours is $h(2)$, so

$$
h(2)=(7200)^{2}=(3600 \cdot 2)^{2} .
$$

After 1.5 hours we've travelled for $1.5 \cdot 3600=5400$ seconds, so we've travelled (5400) ${ }^{2}$ miles. The distance travelled after 1.5 hours is $h(1.5)$, so

$$
h(1.5)=(5400)^{2}=(3600 \cdot 1.5)^{2} .
$$

We notice the pattern

$$
h(t)=(3600 \cdot t)^{2} .
$$

We can rewrite this in terms of g :

$$
h(t)=(3600 t)^{2}=g(3600 t) .
$$

For an Abstract g

The relationship between h and g in the example is pretty compelling. Indeed, after t hours, we have travelled for $3600 t$ seconds, so we've travelled $g(3600 t)$ miles. Therefore

$$
h(t)=g(3600 t) .
$$

b

Working with an Example

Let's take $g^{\prime}(t)=2 t$ to be our example function. So when we've been travelling for t seconds, our velocity is $2 t$ miles/second. After travelling for

1 hour, we've travelled for 3600 seconds, so our velocity is $2 \cdot 3600=7200$ miles/second. In order to convert this into miles/hour, we multiply by 3600 :

$$
h^{\prime}(1)=3600(2 \cdot 3600)=3600 \cdot 7200=3600 \cdot 2 \cdot 3600 \text { miles } / \text { hour }
$$

When we've been travelling for 2 hours, we've travelled for 7200 seconds, so our velocity is $2 \cdot 7200=14400$ miles/second, so

$$
h^{\prime}(2)=3600 \cdot(14400)=3600 \cdot 2 \cdot 7200 \text { miles/hour }
$$

We see the pattern

$$
h^{\prime}(t)=3600 \cdot 2 \cdot 3600 t
$$

and notice that this is the same as

$$
h^{\prime}(t)=3600 g^{\prime}(3600 t)
$$

For an Abstract g

We again hope that the same relationship might hold. Indeed, whatever g is, $g^{\prime}(t)$ is velocity after t seconds in miles/second, so $g^{\prime}(3600 t)$ is velocity after t hours in miles/second, so $3600 g^{\prime}(3600 t)$ is velocity after t hours in miles/hour, so

$$
h^{\prime}(t)=3600 g^{\prime}(3600 t)
$$

C
In order to find $h^{\prime}(1)$, the velocity at 1 hour, we need to know $g^{\prime}(3600)$, the speed at 3600 seconds.

