$$
\begin{aligned}
\tanh ^{\prime} x & =\frac{d}{d x} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& =\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}-\left(-e^{-x}\right)\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}+\left(-e^{-x}\right)\right)}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}-\left(-e^{-x}\right)\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}+\left(-e^{-x}\right)\right)}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =1-\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2} \\
& =1-(\tanh x)^{2} .
\end{aligned}
$$

Now we plug in $\tanh ^{-1} x$:

$$
\tanh ^{\prime}\left(\tanh ^{-1}(x)\right)=1-\left(\tanh \left(\tanh ^{-1} x\right)\right)^{2}=1-x^{2}
$$

Using the derivative rule for inverses,

$$
\frac{d}{d x} \tanh ^{-1} x=\frac{1}{\tanh ^{\prime}\left(\tanh ^{-1}(x)\right)}=\frac{1}{1-x^{2}} .
$$

7
a
The units of $Q^{\prime}(p)$ are $\frac{\text { units of } \mathrm{Q}}{\text { units of } \mathrm{p}}$, so widgets/dollar (assuming price is in dollars). Typically $Q^{\prime}(p)$ will be negative: as price goes up, we expect to sell fewer units. ${ }^{1}$

[^0]b
Elasticity is unitless: the units are $\frac{\text { dollars }}{\text { widgets } \frac{\text { widgets }}{\text { dollars }} \text {, and the top and bottom }}$ cancel. (This is part of why elasticity is useful: the derivative depends on what currency you use, but the elasticity doesn't.)
c
$\ln Q(p)=\ln 3 p^{-1 / 2}=\frac{-1}{2} \ln 3 p=\frac{-1}{2} \ln 3+\frac{-1}{2} \ln p$. The derivative is
$$
[\ln Q(p)]^{\prime}=0+\frac{-1}{2 p}=\frac{-1}{2 p} .
$$
d
$E(p)=\frac{p}{Q(p)} Q^{\prime}(p)=p(\ln Q(p))^{\prime}=p \frac{-1}{2 p}=\frac{-1}{2}$.

[^0]: ${ }^{1}$ In fact, this is so common that products where $Q^{\prime}(p)$ is positive have a special name: they're known as Giffen goods.

