a and b

4

$$\frac{d}{d} y$$

$$x$$
so $y = d\sin\theta$ and $x = d\cos\theta$.

С

We use implicit differentiation: $\frac{dy}{dt} = \frac{dd}{dt}\sin\theta$ and $\frac{dx}{dt} = \frac{dd}{dt}\cos\theta$.

\mathbf{d}

 $y(t) = -\frac{g}{2}t^2 + v_yt = -\frac{g}{2}t^2 + (v\sin\theta)t$. (We can plug in to see that y(0) = 0, and take the derivatives to check the other two requirements. Solving y(t) = 0, we get t = 0 or $t = \frac{2v\sin\theta}{g}$. This second one must be when the cannonball returns to the ground.

\mathbf{e}

The velocity is $v \cos \theta$, so it hits the ground after traveling $\frac{2v^2 \sin \theta \cos \theta}{g} = \frac{v^2 \sin 2\theta}{g}$.

\mathbf{f}

If the angle is $\pi/2$, we're sending the ball straight up, so it is shouldn't be travelling horizontally at all. Indeed, $\cos \pi/2 = 0$, so the horizontal distance travelled in this case is 0.

\mathbf{g}

We want $\frac{50^2}{g} = \frac{v^2 \sin 2(\pi/4)}{g} = \frac{v^2}{g}$, so v = 50.

\mathbf{h}

We know that the distance the ball travels, as a function of v and θ , is $x = \frac{v^2 \sin 2\theta}{q}$.

 $x = \frac{1}{g}$. Let's suppose we make an error in v: θ is constant, and we view x as a fuction of v. Then $dx = 2\frac{v \sin 2\theta}{g} dv$, and $\frac{dx}{x} = \frac{2\frac{v \sin 2\theta}{g} dv}{\frac{v^2 \sin 2\theta}{g}} = 2\frac{dv}{v}$. When the percentage error is 5%, so $\frac{dv}{v} = 0.05$, this is an error of 10%. Instead, let's suppose we make an error in θ : v is constant, and we view x as a function of θ . Then $dx = \frac{v^2}{g} 2\cos 2\theta d\theta$ and $\frac{dx}{x} = \frac{\frac{v^2}{g} 2\cos 2\theta d\theta}{\frac{v^2 \sin 2\theta}{g}} = 2\cot 2\theta d\theta$.