Using the quotient rule,

$$
\begin{aligned}
\tanh ^{\prime}(x) & =\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =\frac{\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}-\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2} \\
& =1-(\tanh x)^{2} .
\end{aligned}
$$

Therefore

$$
\tanh ^{\prime}\left(\tanh ^{-1} x\right)=1-\left(\tanh \left(\tanh ^{-1} x\right)\right)^{2}=1-x^{2}
$$

Therefore using the rule for the derivative of an inverse function,

$$
\frac{d}{d x} \tanh ^{-1} x=\frac{1}{\tanh ^{\prime}\left(\tanh ^{-1} x\right)}=\frac{1}{1-x^{2}} .
$$

In order for these piecewise functions to be differentiable at 1 , two things need to happen:

1. The two pieces need to meet-that is, it needs to be continuous at 1 , so the two parts need to have the same value at 1 ,
2. The pieces need to meet smoothly - the derivatives of the two parts need to have the same value at 1 .

3a
$\sqrt{1}=1 \neq 1 / 2$, so this is not continuous at 1 , so it cannot be differentiable at 1.

A picture makes pretty clear what goes wrong:

3b
$e^{1}=e=e \cdot 1$, so the two pieces meet at 1 . The derivatives are e^{x} and e, which again agree at 1 . In the picture, we can see that the function looks smooth:

3c
$1^{2}=1$, so the pieces meet at 1 . The derivatives are $2 x$ and 1 , so at 1 the derivatives are $2 \cdot 1 \neq 1$, so the function is not differentiable. In the picture we see that though there isn't a jump (the function is continuous), there is a sharp corner:

5
$5 \mathbf{a}$
The units of $Q(p)$ will be the number of units sold. The units of p will be a currency, for instance, dollars. The units of $Q^{\prime}(p)$ will be units per dollar. For most goods, $Q^{\prime}(p)$ is negative: if we raise the price, we sell less.

5b

The units are

$$
\frac{\text { dollars }}{\text { units }} \cdot \frac{\text { units }}{\text { dollars }}
$$

so $E(p)$ is unitless (it has no units).

5c
Since $\ln Q(p)=\ln 3 p^{-1 / 2}=\ln 3+\ln p^{-1 / 2}=\ln 3-\frac{1}{2} \ln p,[\ln Q(p)]^{\prime}=-\frac{1}{2 p}$.

5d

$E(p)=p \frac{Q^{\prime}(p)}{Q(p)}=p[\ln Q(p)]^{\prime}=p\left(-\frac{1}{2 p}\right)=-\frac{1}{2}$.

6

We have $d=\frac{v^{2} \sin 2 \theta}{g}$. This problem asks us for to consider two situations.

First situation

We treat v as constantly equal to 50 and θ as a variable. We want Δd when $\Delta \theta=0.2$; we use the approximation formula for error: $\Delta d \approx d^{\prime}\left(\theta_{0}\right) \Delta \theta$ (where we take the derivative with respect to θ). We have $d(\theta)=\frac{v^{2} \sin 2 \theta}{g}=\frac{50^{2} \sin 2 \theta}{g}$ (because v is constantly 50), so $d^{\prime}(\theta)=\frac{2.50^{2} \cos 2 \theta}{g}$, so

$$
\Delta d \approx d^{\prime}\left(\theta_{0}\right) \Delta \theta=\frac{2 \cdot 50^{2} \cos 2 \theta_{0}}{g} \Delta \theta=\frac{2 \cdot 50^{2} \cos \pi / 4}{g} \Delta \theta=0
$$

because $\theta_{0}=\pi / 4$.

Second situation

We treat θ as constantly equal to $\pi / 4$ and v as a variable. We want Δd when $\Delta v=0.2$; we use the approximation formula for error, $\Delta d \approx d^{\prime}\left(v_{0}\right) \Delta v$ (where we take the derivative with respect to v). We have $d(v)=\frac{v^{2} \sin 2 \theta}{g}=$ $\frac{v^{2} \sin (\pi / 2)}{g}=\frac{v^{2}}{g}$, so $d^{\prime}(v)=\frac{2 v}{g}$. So

$$
\Delta d \approx d^{\prime}\left(v_{0}\right) \Delta v=\frac{2 v_{0}}{g} \Delta v=\frac{100}{g} \Delta v=\frac{100}{g} \cdot 0.2 .
$$

So the error when we get v wrong is much bigger.

