Math 103, Fall 2014
 Week 10

In Class Work, Thursday, October 30th

Warm Up

Identify the inflection points of $x^{2}(x-2)$.

Exercise 1

1. Does x^{4} have a critical point at 0 ? Why or why not?
2. Does x^{4} have an inflection point at 0 ? Why or why not?

Exercise 2

Sketch a graph of the function $f(x)=\frac{x^{2}+x-2}{x+3}$.
There's a lot of information to organize here.
(i) Where is $f(x)$ undefined?
(ii) For which values of x is $f(x)=0$?
(iii) What intervals is $f(x)$ positive on?
(iv) Identify horizontal and vertical asymptotes.
(v) Find $f^{\prime}(x)$.
(vi) Find the critical points of $f(x)$.
(vii) What intervals is $f(x)$ increasing or decreasing on?
(viii) Find $f^{\prime \prime}(x)$.
(ix) Find the critical points of $f^{\prime}(x)$.
(x) What intervals is $f(x)$ concave up or concave down on?
(xi) You may find it helpful to organize all this information into a table (or not--figure out what works for you)
(xii) Sketch the graph!

Exercise 3

(a) Sketch a graph of a function which is defined on the interval [0, 2], is concave down on the interval $[0,1]$, and concave up on the interval $[1,2]$.
(b) Sketch a graph of a function $u(x)$ which is defined everywhere, so that $u^{\prime}(x)$ is defined and positive for all x, and such that $\lim _{x \rightarrow-\infty} u(x)=-2$ and $\lim _{x \rightarrow \infty} u(x)=2$.

Exercise 4

Sketch the graph of $f(x)=\frac{x^{2}-1}{x^{2}+1}$.

Exercise 5

(a) a and b are unknown constants and $g(x)=x e^{a x}+b x$ is an unknown function. You know that $g(x)$ has an absolute minimum at the point $(1,-e)$; what does this tell you about $g^{\prime}(1) ?$
(b) Use what you know about $g^{\prime}(1)$ to find an equation relating a and b.
(c) Use the fact that $g(1)=-e$ to solve for a and b.

