Math 103, Fall 2014 Week 11

In Class Work, Tuesday, November 4th

Warm Up

Find $\lim_{x\to 0} \frac{\cos x - 1}{x^2}$.

Exercise 1

- (a) Give examples of functions u(x) and v(x) so that:
 - $\lim_{x \to 2} u(x) = 0,$
 - $\lim_{x\to 2} v(x) = 0$, and
 - $\lim_{x \to 2} \frac{u(x)}{v(x)} = 0.$
- (b) Give examples of functions s(x) and t(x) so that:
 - $\lim_{x \to 2} s(x) = 0,$
 - $\lim_{x\to 2} t(x) = 0$, and
 - $\lim_{x\to 2} \frac{s(x)}{t(x)} = \infty.$

Exercise 2

- (a) What kind of indeterminate form is $\lim_{x\to 0^+} x^2 \ln x?$
- (b) Combine algebra with L'Hospital's rule to find $\lim_{x\to 0^+} x^2\ln x.$
 - (i) L'Hospital's rule only works on fractions, so use the fact that $x^2 = \frac{1}{\frac{1}{x^2}}$ to rewrite this as a fraction.
 - (ii) Check that you have an indeterminate form and apply L'Hospital's rule.

Exercise 3

- (a) Find $\lim_{x\to\pi} (\csc x)(\ln \frac{x}{\pi})$.
- (b) In the first part you had a choice: you could have written it as $\lim_{x\to 0} \frac{\ln \frac{x}{\pi}}{\frac{1}{\csc x}}$ or $\lim_{x\to 0} \frac{\csc x}{\frac{1}{\ln \frac{x}{\pi}}}$. Which did you choose, and why?

Exercise 4

Suppose f(x) and g(x) are unknown functions, and we want to know what $\lim_{x\to 4} \frac{f(x)}{g(x)}$ is.

- (a) Suppose you know that $\lim_{x\to 4} f(x) = 3$ and $\lim_{x\to 4} g(x) = 7$. Is this enough information to figure out what $\lim_{x\to 4} \frac{f(x)}{g(x)}$ is? If so, what is it (and how do you know)? If not, give a convincing argument that this is not enough information.
- (b) Suppose you know that $\lim_{x\to 4} f(x) = 0$ and $\lim_{x\to 4} g(x) = 6$. Is this enough information to figure out what $\lim_{x\to 4} \frac{f(x)}{g(x)}$ is? If so, what is it (and how do you know)? If not, give a convincing argument that this is not enough information.
- (c) Suppose you know that $\lim_{x\to 4} f(x) = 2$ and $\lim_{x\to 4} g(x) = 0$. Is this enough information to figure out what $\lim_{x\to 4} \frac{f(x)}{g(x)}$ is? If so, what is it (and how do you know)? If not, give a convincing argument that this is not enough information.
- (d) Suppose you know that $\lim_{x\to 4} f(x) = 0$ and $\lim_{x\to 4} g(x) = 0$. Is this enough information to figure out what $\lim_{x\to 4} \frac{f(x)}{g(x)}$ is? If so, what is it (and how do you know)? If not, give a convincing argument that this is not enough information.

Exercise 5

- (a) What kind of indeterminate form is $\lim_{x\to 0^+} (\csc x \cot x)$?
- (b) Combine algebra with L'Hospital's rule to find $\lim_{x\to 0^+} (\csc x \cot x)$.

- (i) Write these trig functions as fractions (for instance, $\csc x = \frac{1}{\sin x}$)
- (ii) Put them over a common denominator.
- (iii) Check that you have an indeterminate form and L'Hospital's rule.

Exercise 6

Find $\lim_{x\to 1^+}(\frac{1}{x-1}-\frac{1}{\ln x}).$ You'll want to find a different way to turn this into a fraction.

Exercise 7

- (a) What kind of indeterminate form is $\lim_{x\to 0^+} x^x$?
- (b) Combine algebra with L'Hospital's rule to find $\lim_{x\to 0^+} x^x$.
 - (i) Use logarithm rules to rewrite $\lim_{x \to 0^+} x^x = e^{\ln \lim_{x \to 0^+} x^x}$
 - (ii) Use continuity to bring \ln inside the limit
 - (iii) Use the logarithm rule to rewrite $\ln x^x = x \ln x$
 - (iv) Now you have an indeterminate product. Use the techniques you learned above to find this limit.

Exercise 8

- (a) What kind of indeterminate form is $\lim_{x\to 0} (\cos x)^{1/x}$?
- (b) Find $\lim_{x\to 0} (\cos x)^{1/x}$.

Exercise 9

- (a) Explain why 0^{∞} is *not* an indeterminate form.
- (b) Find $\lim_{x\to\infty} (1/x)^x$.

Exercise 10

(a) Explain why L'Hospital's rule doesn't help you find $\lim_{x\to 0^+} \frac{\sqrt{x}}{\sqrt{\sin x}}.$

(b) Find $\lim_{x\to 0^+} \frac{\sqrt{x}}{\sqrt{\sin x}}$ another way.