Math 103, Fall 2014 Week 12

In Class Work, Thursday, November 13th

Warm Up

- 1. Suppose g and h are integrable functions such that $\int_0^3 g(x)dx = 2$, $\int_2^3 h(x)dx = 1$, and $\int_0^2 g(x) = -1$.
 - (a) What is $\int_2^3 g(x) dx$?
 - (b) What is $\int_{2}^{3} g(x) + h(x) dx$?
 - (c) What is $\int_2^2 g(x) dx$?
 - (d) What is $\int_{2}^{3} 2g(x) 4h(x)dx$?
 - (e) What is the average value of g(x) on the interval [0,3]?
- 2. Consider the following strange function:

What is $\int_0^4 u(x) dx$?

Exercise 1

(a) Explain why L'Hospital's rule doesn't help you find $\lim_{x\to 0^+} \frac{\sqrt{x}}{\sqrt{\sin x}}$.

(b) Find $\lim_{x\to 0^+} \frac{\sqrt{x}}{\sqrt{\sin x}}$ another way.

Exercise 2

Consider the integrable function f(x) below:

- 1. Express the area shaded like \square as a definite integral.
- 2. Express the area shaded like as a definite integral.
- 3. Express the combined shaded area as a definite integral.
- 4. Write an equation relating these three integrals.
- 5. Which rule from Table 5.4 on page 317 does this represent?

Exercise 3

Without doing any calculations (but feel free to draw a picture), which is larger, $\int_1^2 x^2 dx$ or $\int_1^2 x dx$?

Exercise 4

We're going to put together everything we've seen to calculate $\int_1^3 x^2/2 - x + 1\,dx.$

- (a) As a warm up, estimate the area under this curve using four rectangles
- (b) Now calculate $\int_1^3 x^2/2 x + 1 \, dx$.
 - (i) Suppose we divide the area under the curve into n rectangles, where n is some big number. What is the width of each rectangle?
 - (ii) When there are n rectangles, what is the height of the 1st rectangle? What about the 5th? The kth?
 - (iii) Express the area under n rectangles using Σ notation.
 - (iv) Use the rules for Σ notation to calculate this sum.
 - (v) Take the limit as $n o \infty$. The value of this limit is the definite intgral.

Exercise 5

We want to check that $\int_0^1 x^{-2} dx$ is actually infinite. We will do this by showing that $\int_0^1 x^{-2} dx \ge N$ for all N.

Both graphs are showing $1/x^2$; the first one gives a bigger picture, and the second one is zoomed in to only show that part where x is between 0 and 1 and y is between 0 and 4. Don't get confused by the fact that the picture is cut off: as x gets closer to 0, $1/x^2$ gets big, so the region underneath the curve $1/x^2$ includes things above y = 4.

(a) Consider the box underneath the curve $1/x^2$ which has width 1 and is as tall as possible. Draw this box in the second picture above and calculate its area.

- (b) Consider the box underneath the curve $1/x^2$ which has width 1/2 and is as tall as possible. Draw this box in the picture above and calculate its area.
- (c) What is the area of the largest possible box which fits underneath the curve $1/x^2$ and has width 1/4?
- (d) Find a box contained underneath the curve $1/x^2$ with area $\ge N$ for an arbitrary N?
- (e) Explain why this means $\int_0^1 x^{-2} dx$ must be infinite.

In 104 you'll see that some curves can have finite area even though they approach infinity. For instance, you'll see that $\int_0^1 x^{-1/2} dx = 2$.

Exercise 6

We can view the definite integral as a function itself.

1. Define a function $F(t) = \int_0^t x \, dx$? Use geometry to express F(t) as a polynomial.

Draw a picture of the area represented by the integral $\int_0^t x \ dx$.

2. Define a function $G(t) = \int_2^t x \, dx$? Use geometry to express G(t) as a polynomial.