Math 103, Fall 2014
 Week 2

In Class Work, Thursday, September 4th

Warm Up

(a) Sketch the graph of $\ln x$.
(b) Simplify each of the following expressions as much as you can:
(a) $e^{-\ln 2 \pi}$
(b) $\ln 3 e^{2}$
(c) $4 \ln \sqrt{1 / e}$
(c) The following picture shows the graph of an unknown function $g(x)$:

(a) Estimate the value of $g^{-1}(1)$ (try to be within 0.2 of the correct value, which is about as accurate as is reasonable from this picture).
(b) Sketch the graph of $g^{-1}(x)$.

Exercise 1

Consider the function $f(x)=x^{5}+x^{3}-1$. If $z=f^{-1}(-1)$, what is z ?
Finding a general expression for $f^{-1}(x)$ is hopeless, but we can still hope to find particular values of f^{-1}. It might help to look at the definition of being an inverse function. Make sure to check your answer by plugging it into f; what value should $f(z)$ have?

Exercise 2

Find a value c so that $6^{x}=e^{c x}$.

Exercise 3

Someone at a different table suggests the following calculation:

$$
(\ln a)^{2}=2 \ln a .
$$

Writing a short argument which will convince this person that they are wrong. (It may be helpful for one person in the group to take the role of skeptic and argue in defense of this equation.)

Exercise 4

$h(x)$ is an unknown function. A few values are given in the following table:

x	0	1	2	3	4
$h(x)$	4	2	1	0	-2

(a) What is $h^{-1}(0)$?
(b) What is $h^{-1}(4)$?

Exercise 5

Suppose $r(x)=3 x^{3}+\ln x$. Solve for x in the equation $r^{-1}(x)=2$.

Exercise 6

(a) Give a value θ such that $\sin ^{-1}(\sin (\theta)) \neq \theta$.
(b) Explain why the function $\sin x$ does not have an inverse but the function $\sin ^{-1} x$ does have an inverse.

Once the other group at your table has answered this, swap answers with them to see if other people find your explanation clear and useful.

Exercise 7

Solve the equation

$$
\log _{3}(x+3)+\log _{3}(x-4)=2
$$

for x. (You should only get one value of x as an answer.)

Exercise 8

Consider the functions $u(x)$ and $v(x)$ shown in the following graphs:

(a) What are the domains and ranges of these functions?
(b) Which of these functions are one-to-one?
(c) For each of these functions, what is the best possible domain on which the function is one-to-one?
(d) Sketch the inverses of each function on the domain you have chosen.

