Math 103, Fall 2014
 Week 5

In Class Work, Tuesday, September 23rd

Exercise 1

A few groups started on this problem last week, but none of them got it right. I've tweaked the instructions a bit, so even if you tried this before, start it over with a fresh eye.

A car is traveling on a widing road at varying speed. Let $g(t)$ represent the distance, in miles, that the object has traveled after t seconds. Let $h(t)$ represent the distance in miles the same object has traveled after t hours.
(a) Write an equation relating the functions g and h.

> This is a question we have plenty of intuition for, but it's hard to bring that intuition to bear on an abstract function like $g(t)$. A useful technique is to first think about a concrete example. We'll make up an example function which could be $g(t)$ and think about that example before trying to think about the general case. We have to pick a concrete function to stand in for $g(t)$; if it's too complicated, it won't be any better than an unknown function, but if it's too simple, it won't be representative. Picking good examples is an art; in this case, I happen to know that a linear function will be too simple, but that anything more complicated will work.
(i) Make up an example function g. It shouldn't be linear, but shouldn't be too much more complicated. Some good options are a quadratic (if you want to think about the car as travelling in one direction and accelerating) or sin/cos (if you want to think about the car going back and forth).
(ii) Use the function g you chose to calculate how far the object travels in one hour
(iii) Now use the function g to calculate how far the object travels in two hours
(iv) And one and a half hours...
(v) Try to generalize to find the relationship between g and h
(vi) Now try to come up with the general relationship between g and h which works no matter what g is.
(b) Write an equation relating g^{\prime} and h^{\prime}.

Again, a good way to start is by picking a concrete example which could be g^{\prime}. It doesn't have to be the derivative of g you used above--this is a different example. This time it turns out that even a linear function is complicated enough. When figuring out the relationship between g^{\prime} and h^{\prime}, it may help to identify what the units of g^{\prime} and h^{\prime} are.
(c) This equation should allow you to compute $h^{\prime}(1)$ if you know some values of $g^{\prime}(x)$. Which values of x do you need to know $g^{\prime}(x)$ for in order to compute $h^{\prime}(1)$?

Exercise 2

(a) Plot f assuming that $f(-2)=1$.
(b) Plot f on the same axes, this time assuming $f(-2)=4$

Exercise 2

We will study functions

$$
g(x)= \begin{cases}a x+b & \text { if } x \leq 1 / 2 \\ x^{2} & \text { if } x>1 / 2\end{cases}
$$

where a and b are constants.
(a) What relationship must hold between a and b in order for $g(x)$ to be continuous?
(b) What values must a and b have in order for $g(x)$ to be differentiable as well?
(c) Have each person in your group draw a different version of $g(x)$ (that is, a different choice of $a, b)$ so tha $g(x)$ is continuous but not differentiable.
(d) Draw the version where $g(x)$ is differentiable.
(e) Compare the graph where $g(x)$ is differentiable to the three where it isn't. Write a sentence or two describing the difference.

Exercise 3

The height of a certain projectile in feet above ground level is given by $h(t)=192 t-16 t^{2}$ where t is measured in seconds after firing. At what time is the projectile neither ascending nor descending? (You don't need to calculate the derivative! Use what you know about quadratic functions.)

Exercise 4

The limit

$$
\lim _{z \rightarrow \pi} \frac{\sin (z)-\sin \pi}{z-\pi}
$$

represents the derivative of the function $\sin x$ at π-that is,

$$
\sin ^{\prime}(\pi)=\lim _{z \rightarrow \pi} \frac{\sin (z)-\sin \pi}{z-\pi}
$$

(Compare to the alternative formula for the derivative to see why.)
Each of the following limits represents the derivative of some function at some point; identify the function and the point. (Don't evaluate the limits.)
(a) $\lim _{z \rightarrow 7} \frac{\sqrt{z}-\sqrt{7}}{z-7}$
(b) $\lim _{z \rightarrow 2} \frac{z^{2}-4}{z-2}$
(c) $\lim _{z \rightarrow r} \frac{e^{z}-e^{r}}{z-r}$
(d) $\lim _{h \rightarrow 3} \frac{\frac{1}{h^{2}}-\frac{1}{9}}{h-3}$

Exercise 5

Use the alternative form of the derivative to find each of the following:
(a) $f^{\prime}(2)$ where $f(x)=x^{2}$,
(b) $g^{\prime}(7)$ where $g(x)=\sqrt{x}$,
(c) $u^{\prime}(0)$ where $u(x)=\cos x$.

