Math 103, Fall 2014
 Week 6

In Class Work, Thursday, October 2nd

Warm Up

(a) The chain rule is used to find the derivative of functions which are computed in multiple steps. For example, the function $e^{\sin x}$ is computed by first finding the intermediate value $u=\sin x$, and then calculating e^{u}. Break each of the following functions into a composition of two separate simpler functions. (There's no need to take the derivative.)
(i) $e^{\tan x}$
(ii) $\sin e^{x}$
(iii) $\tan ^{-1}\left(1+x^{3}\right)$
(iv) $\ln \cos ^{-1} \sqrt{x}$
(v) $\ln \tan e^{x^{2}}$
(b) (i) Find $\frac{d}{d x} e^{\tan x}$.
(ii) Find $\frac{d}{d x} \sin e^{x}$.

Exercise 1

(a) What is $\frac{d}{d x} \sin e^{x^{2}}$?

Anything written in this font is only there to provide hints to get through a problem. You're always free to ignore them if you don't find them necessary. i, ii, and iii aren't separate questions, they're just steps you might want to take while solving a.
(i) First write this as a composition of two functions: $\sin e^{x^{2}}=$ $f(g(x))$
(ii) Find $f^{\prime}(u)$ and $g^{\prime}(x)$
(iii) Use the chain rule to find the answer.
(b) What is the derivative with respect to x of $e^{\sqrt{1+x^{2}}}$?

Exercise 2

(a) What is $\frac{d}{d x} \ln \sin x$?
(b) What is $\frac{d}{d x} \sqrt{\ln \sin x}$?
(c) What is $\frac{d}{d x} \tan \sqrt{\ln \sin x}$?
(d) What is $\frac{d}{d x} e^{\tan \sqrt{\ln \sin x}}$?

Exercise 3

A car is traveling on a winding road at a varying speed. Let $g(s)$ represent the distance, in miles, that the object has traveled after s seconds. Let $h(t)$ represent the distance in miles the same object has traveled after t hours.
(a) Write an equation relating the functions g and h.
(b) Take the derivative to find an equation relating g^{\prime} and h^{\prime}.

Exercise 4

A lamp is on the ground 4 ft away from a wall and angled upwards at angle θ as in this picture

It casts a beam on the wall at height $h(\theta)$.
(a) What is $h(\theta)$ as a function of θ ?
(b) Give the units of $\frac{d h}{d \theta}$ and an interpretation.
(c) What is $\frac{d h}{d \theta}$?
(d) What is $\theta(d)$, the angle in radians as a function of the angle in degrees?
(e) What is $\frac{d}{d d} h(\theta(d))$?
(f) When the angle is at $\pi / 4$ radians (equivalently, 45 degrees), is $\frac{d}{d d} h(\theta(d))$ the same number as $\frac{d}{d \theta} h(\theta)$? If not, which is bigger?

Exercise 5

If f, g and h are differentiable functions, compute the following quantities (your answer might include the functions f, g, h and $f^{\prime}, g^{\prime}, h^{\prime}$, as well as other functions).
(a) $[f(x) \cdot \sin g(x)]^{\prime}$

Make sure to test your answer: try an example where you know $f, g, f^{\prime}, g^{\prime}$ and where the derivative of $f(x) \cdot \sin g(x)$ is easy to find, and make sure your formula gives the same answer you get by hand.
(b) $[f(g(h(x)))]^{\prime}$
(c) $[\ln (f(x) \cdot g(x))]^{\prime}$

Exercise 6

What is the derivative of 3^{x} ?

Exercise 7

There is a function called erf with the property that $\frac{d}{d x} \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}$. What is $\frac{d}{d z} \operatorname{erf}(\sin z)$?

Exercise 8

		1	2	3	4
	$\mathrm{f}(\mathrm{x})$	1	2	3	4
You know the following values of $f, g, f^{\prime}, g^{\prime}:$	$\mathrm{g}(\mathrm{x})$	2	1	3	4
	$\mathrm{f}^{\prime}(\mathrm{x})$	4	3	2	1
	$\mathrm{~g}^{\prime}(\mathrm{x})$	3	2	4	1

What is $[f \circ g]^{\prime}(2)$?

