Math 103, Fall 2014 Week 7

In Class Work, Tuesday, October 7th

Warm Up

A function f(x) and its inverse are drawn below.

- (i) Between x = -2 and x = 1, f(x) is nearly flat. What does this mean about its derivative?
- (ii) Identify the part of the graph of f^{-1} between f(-2) and f(1). Is the value of $(f^{-1})'$ large or small on this interval? Positive or negative?
- (iii) Draw the tangent line to f(x) at x = -2. Is the slope positive or negative? Is the absolute value of the slope more than 1 or less than 1?
- (iv) Draw the tangent line to $f^{-1}(x)$ at f(-2). Is the slope positive or negative? Is the absolute value of the slope more than 1 or less than 1?

Exercise 1

Let f(x) be the function $f(x) = x^5 + x^2 + 1$. What is $\frac{d}{dx}f^{-1}(x)$? (The answer will include $f^{-1}(x)$.)

- (a) Find the answer using implicit differentiation.
 - (i) Set $y = f^{-1}(x)$ and solve to get $x = \cdots$.
 - (ii) Use implicit differentiation on this equation.
 - (iii) Solve for $\frac{dy}{dx}$; you'll end up with y as well as x in your answer.
 - (iv) Substitute $f^{-1}(x)$ for y to get a final answer.
- (b) Find the answer using the formula for derivatives of inverse functions.

Exercise 2

Consider the function $g(x) = \frac{1}{\sqrt{x+1}}$. Below is a calculation of the derivative of $g^{-1}(x)$ using implicit differentiation. Copy the steps into your solution, filling in the missing steps.

- We give the name $y = g^{-1}(x)$, so we are trying to find $\frac{dy}{dx}$.
- Since $y = g^{-1}(x)$, also g(y) = x.
- By implicit differentiation, we have $\frac{dy}{dx} =$ _____ (fill in a function of x and y—or maybe just a function of y)
- We know that $x = \frac{1}{\sqrt{y+1}}$, so we can substitute that in to the previous equation to find that $\frac{dy}{dx} =$ _____ (fill in a function of x)

Exercise 3

Suppose you have an unknown function h with the following table of values:

х	1	2	3	4	5	6	7
h(x)	7	5	2	-1	-3	-6	-7
h'(x)	-4	0	-3	-1	-2	-1	-1

- (a) What is $h^{-1}(2)$?
- (b) What is $h'(h^{-1}(2))$?
- (c) Use the derivative rule for inverses (p. 177) to find $(h^{-1})'(2)$.
- (d) Use the derivative rule for inverses to find $(h^{-1})'(-3)$.

Exercise 4

Find $\frac{d}{dx}\sqrt{(x^2-4)\sqrt{2x+1}}$.

Taking the derivative directly would take a lot of calculation. Instead, we use *logarithmic differentiation*:

- (i) Set $y = \sqrt{(x^2 4)\sqrt{2x + 1}}$. Take the logarithm of both sides, and simplify the right (as far as you easily can).
- (ii) You now have $\ln y = \cdots$. Take the derivative of both sides using implicit differentiation.
- (iii) Solve for $\frac{dy}{dx}$ in terms of x. (Remember you know what y is.) Don't multiply everything out! Leaving it as a product is a perfectly good answer.

Exercise 5

Consider the two functions

- $g(x) = \frac{(x^2+2)e^x}{(x+1)x^3}$, and
- $h(x) = \sin \tan e^x$.

We want to find g'(x) and h'(x).

- (a) One of these functions will be easier to find using logarithmic differentiation. Which one, and why?
- (b) Find g'(x) and h'(x), using logarithmic differentiation for exactly one of them.

Exercise 6

tanh is a function you may not have encountered yet. $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Find $\frac{d}{dx} \tanh^{-1} x$.

- (i) Find $\tanh' x$.
- (ii) Using some algebra, manipulate your definition of $\tanh' x$ so that it is expressed in terms of $\tanh x$.
- (iii) What is $\tanh' \tanh^{-1} x$? $(\tanh^{-1} is$ the inverse of \tanh . Remember to use the properties of inverses.)
- (iv) Use the derivative rule for inverses to find $\frac{d}{dx} \tanh^{-1} x$?

Exercise 7

In a simple economic model, there is a relationship between the *price* p of widgets and the *quantity* Q(p) of widgets that will be sold at price Q(p).

- (a) What are the units of Q'(p)? For most goods, is Q'(p) positive or negative?
- (b) The elasticity of demand is the value $E(p) = \frac{p}{Q(p)}Q'(p)$. This value measures change relative to the original values. For example, if E(p) is always equal to -1, that means that when the price increases by 1%, the quantity will decrease by 1%. What are the units of elasticity?
- (c) Suppose $Q(p) = 3p^{-1/2}$. Find $(\ln Q(p))'$.
- (d) Remember that $(\ln Q(p))' = \frac{Q'(p)}{Q(p)}$. What is E(p)?