Math 103, Fall 2014
 Week 7

In Class Work, Tuesday, October 7th

Warm Up

A function $f(x)$ and its inverse are drawn below.

(i) Between $x=-2$ and $x=1, f(x)$ is nearly flat. What does this mean about its derivative?
(ii) Identify the part of the graph of f^{-1} between $f(-2)$ and $f(1)$. Is the value of $\left(f^{-1}\right)^{\prime}$ large or small on this interval? Positive or negative?
(iii) Draw the tangent line to $f(x)$ at $x=-2$. Is the slope positive or negative? Is the absolute value of the slope more than 1 or less than 1 ?
(iv) Draw the tangent line to $f^{-1}(x)$ at $f(-2)$. Is the slope positive or negative? Is the absolute value of the slope more than 1 or less than 1 ?

Exercise 1

Let $f(x)$ be the function $f(x)=x^{5}+x^{2}+1$. What is $\frac{d}{d x} f^{-1}(x)$? (The answer will include $f^{-1}(x)$.)
(a) Find the answer using implicit differentiation.
(i) Set $y=f^{-1}(x)$ and solve to get $x=\cdots$.
(ii) Use implicit differentiation on this equation.
(iii) Solve for $\frac{d y}{d x}$; you'll end up with y as well as x in your answer.
(iv) Substitute $f^{-1}(x)$ for y to get a final answer.
(b) Find the answer using the formula for derivatives of inverse functions.

Exercise 2

Consider the function $g(x)=\frac{1}{\sqrt{x+1}}$. Below is a calculation of the derivative of $g^{-1}(x)$ using implicit differentiation. Copy the steps into your solution, filling in the missing steps.

- We give the name $y=g^{-1}(x)$, so we are trying to find $\frac{d y}{d x}$.
- Since $y=g^{-1}(x)$, also $g(y)=x$.
- By implicit differentiation, we have $\frac{d y}{d x}=$ \qquad (fill in a function of x and y-or maybe just a function of y)
- We know that $x=\frac{1}{\sqrt{y+1}}$, so we can substitute that in to the previous equation to find that $\frac{d y}{d x}=$ \qquad (fill in a function of x)

Exercise 3

Suppose you have an unknown function h with the following table of values:

x	1	2	3	4	5	6	7
$\mathrm{~h}(\mathrm{x})$	7	5	2	-1	-3	-6	-7
$\mathrm{~h} \prime(\mathrm{x})$	-4	0	-3	-1	-2	-1	-1

(a) What is $h^{-1}(2)$?
(b) What is $h^{\prime}\left(h^{-1}(2)\right)$?
(c) Use the derivative rule for inverses (p. 177) to find $\left(h^{-1}\right)^{\prime}(2)$.
(d) Use the derivative rule for inverses to find $\left(h^{-1}\right)^{\prime}(-3)$.

Exercise 4

Find $\frac{d}{d x} \sqrt{\left(x^{2}-4\right) \sqrt{2 x+1}}$.
Taking the derivative directly would take a lot of calculation. Instead, we use logarithmic differentiation:
(i) Set $y=\sqrt{\left(x^{2}-4\right) \sqrt{2 x+1}}$. Take the logarithm of both sides, and simplify the right (as far as you easily can).
(ii) You now have $\ln y=\cdots$. Take the derivative of both sides using implicit differentiation.
(iii) Solve for $\frac{d y}{d x}$ in terms of x. (Remember you know what y is.) Don't multiply everything out! Leaving it as a product is a perfectly good answer.

Exercise 5

Consider the two functions

- $g(x)=\frac{\left(x^{2}+2\right) e^{x}}{(x+1) x^{3}}$, and
- $h(x)=\sin \tan e^{x}$.

We want to find $g^{\prime}(x)$ and $h^{\prime}(x)$.
(a) One of these functions will be easier to find using logarithmic differentiation. Which one, and why?
(b) Find $g^{\prime}(x)$ and $h^{\prime}(x)$, using logarithmic differentiation for exactly one of them.

Exercise 6

tanh is a function you may not have encountered yet. $\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$. Find $\frac{d}{d x} \tanh ^{-1} x$.
(i) Find $\tanh ^{\prime} x$.
(ii) Using some algebra, manipulate your definition of $\tanh ^{\prime} x$ so that it is expressed in terms of $\tanh x$.
(iii) What is $\tanh ^{\prime} \tanh ^{-1} x$? ($\tanh ^{-1}$ is the inverse of tanh. Remember to use the properties of inverses.)
(iv) Use the derivative rule for inverses to find $\frac{d}{d x} \tanh ^{-1} x$?

Exercise 7

In a simple economic model, there is a relationship between the price p of widgets and the quantity $Q(p)$ of widgets that will be sold at price $Q(p)$.
(a) What are the units of $Q^{\prime}(p)$? For most goods, is $Q^{\prime}(p)$ positive or negative?
(b) The elasticity of demand is the value $E(p)=\frac{p}{Q(p)} Q^{\prime}(p)$. This value measures change relative to the original values. For example, if $E(p)$ is always equal to -1 , that means that when the price increases by 1%, the quantity will decrease by 1%. What are the units of elasticity?
(c) Suppose $Q(p)=3 p^{-1 / 2}$. Find $(\ln Q(p))^{\prime}$.
(d) Remember that $(\ln Q(p))^{\prime}=\frac{Q^{\prime}(p)}{Q(p)}$. What is $E(p)$?

