Math 103, Fall 2014 Week 8

In Class Work, Thursday, October 16th

Warm Up

(a) (i) Find the linearization of $f(x)=(8+x)^{1 / 3}$ at $x=1$.
(ii) Use a linearization to estimate $\sqrt[3]{8.1}$.
(b) Without using a calculator, estimate $\frac{1}{2.1}$.

Exercise 1

Consider the function $h(x)$ in the graph below:

(a) Draw the linearization at the marked point.
(b) Will the linerization give an overestimate or an underestimate for the value of $h(1.1)$?

Exercise 2

We have a hose with water pouring out, and we want to know how narrow the thinnest portion of the hose is. We calculate this by measuring the volume of water V and using the equation

$$
r(V)=2 \sqrt[4]{V}
$$

(a) What is $r^{\prime}(V)$?

The true volume of water is the number V_{0}. However we make a small mistake in our measurement and instead measure the value $V_{0}+\Delta V$.
(b) In this case, what is the estimate of Δr (as a function of V_{0} and ΔV)?
(c) Estimate the relative error in this case. (Remember that you know an equation for $r\left(V_{0}\right)$.)
(d) Suppose $\frac{\Delta V}{V}=0.01$ (a one percent error). What is the relative error in r ?

Exercise 3

You are trying to cut an ordinary piece of 8.5 "x11" paper to obtain a piece which is $8.5 " \times 6$ ". You will then fold this into a cylinder which is $8.5 "$ tall with circumference 6 ".
(a) Let x be width you actually cut (the value you hope will be 6 "), and therefore the circumference of the cylinder. What is the volume of the cylinder as a function of x ?
(b) If you cut the paper accurately to within 0.01 inches, what will the relative error in the volume be?

Exercise 4

If you throw a ball at velocity v at an angle θ, the object will land $\frac{v^{2} \sin 2 \theta}{g}$ meters away (where g is the gravitational constant). We are aiming at a target $\frac{50^{2}}{g}$ meters away, so if we throw the ball at the angle $\pi / 4$ with $v=50$, we will exactly hit the target. Which throw will get us closer: if we get the velocity exactly right but the angle wrong by 0.2 meters or if we get the angle exactly right but the velocity wrong by 0.2 radians? (Note that you don't need a calculator for this problem.)

Exercise 5

(a) Draw a graph, identify a point, and draw the linearization at that point so that the linearization always underestimates the true value of the function. (That is, $L\left(x_{0}+\Delta x\right)<f\left(x_{0}+\Delta x\right)$ if Δx is a small but not 0.$)$
(b) Draw a graph, identify a point, and draw the linearization at that point so that the linearization always overestimates the true value of the function. (That is, $L\left(x_{0}+\Delta x\right)>f\left(x_{0}+\Delta x\right)$ if Δx is small but not 0 .)
(c) Draw a graph, identify a point, and draw the linearization at that point so that when Δx is small positive number, $L\left(x_{0}+\Delta x\right)<f\left(x_{0}+\Delta x\right)$, but when Δx is a small negative number, $L\left(x_{0}+\Delta x\right)>f\left(x_{0}+\Delta x\right)$.

Exercise 6

Consider this graph of points satisfying $y^{2}=x^{3}-x+\sqrt{\frac{4}{27}}$:

(a) Before taking the derivative, use the graph to identify where you think the derivative of this curve will be defined.
(b) Use implicit differentiation to find the derivative $\frac{d y}{d x}$? (Your final answer should be $\frac{d y}{d x}=\cdots$ with only x and y on the right.)
(c) Compare the points where $\frac{d y}{d x}$ isn't defined to the points on the curve where you didn't expect the derivative to be defined.
(d) Use implicit differentiation to find the derivative $\frac{d^{2} y \text {. (Your final }}{d x^{2}}$. answer should be $\frac{d^{2} y}{d x^{2}}=\cdots$ with only x and y on the right.)

