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ABSTRACT

COUNTING EXTREME POINTS FROM

POISSON PROCESSES ON A HALF LINE

Eric Goodman

Robin Pemantle

Run a Poisson process to generate points on the positive vertical axis, so that the count-

ing process looks like an increasing arc with random jagged edges (see Figure 1.2). The

outermost Poisson points—the extreme points—are those that sit on the boundary of the

counting process’ convex hull. How many extreme points are there? This thesis examines

numerous approaches to this question with different styles of answers. Originally, the inspi-

ration for this problem and the purpose of an answer was to guess a growth exponent for the

extreme primes studied by McNew (2018), Tutaj (2018), and Pomerance (1979); from esti-

mates here, one might guess 1/3. Upon exploration, the Poisson problem, certain results, and

certain techniques herein have unmistakable ties to work by Groeneboom (2011) on a closely

related problem about empirical distributions. In fact, the approach by Groeneboom (2011)

would likely yield these 1/3 answers for our problem, as well (perhaps even with greater

precision than we can provide), though we cannot say with complete certainty, since not all

the details were laid out. Moreover, certain techniques here share features with the work

by Groeneboom (2011), though the approach here begins from a slightly different point-by-

point perspective. We also comment on these similarities and make use of this relationship.

Aside from Poisson processes leading to growth exponent 1/3, we study other examples that

have growth exponent 1 instead.
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Chapter 1

Introduction

In §1.2 we state the main question, but beforehand, we introduce the deterministic version

that inspired it in §1.1. An overview of techniques and results plus their similarities to the

literature is in §1.3. Unanswered questions are in §1.4, and §1.5 presents notation.

1.1 Inspiration: Extreme Primes

McNew [31], Tutaj [38], and Pomerance [33] studied the following problem and some variants.

Plot the sequence of prime numbers pn = 2, 3, 5, . . . as (n, pn), like in Figure 1.1, shade the

convex hull of the region to the left of these points, and mark each point (n, pn) as an extreme

point of this convex hull (blue) or as an interior point (red). Now, if Eprime(t) counts the

number of these blue extreme points (n, pn) with pn ≤ t, then how does Eprime(t) grow as

t → ∞? The theorem below states the best bounds known so far. The lower bounds were

claimed without proof details by Pomerance [33, p. 407]. Details for these lower bounds as

well as the upper bound were provided later by McNew [31]. The stated lower bound was

also verified by Tutaj [38, §4.2, see esp. p. 145 and p. 148].
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Figure 1.1: The convex hull of the region to the left of the primes, one context studied by

McNew [31, cf. p. 126 Fig. 1], Tutaj [38, cf. p. 150], and Pomerance [33].

Theorem 1.1 (See McNew [31, Theorem 2 and Corollaries 1–2] and the references above).

As t→∞,

Ω

(
t1/4

log3/2 t

)
∗
≤ Eprime(t) ≤ O

(
t2/3

log2/3 t

)
,

where
∗
≤ uses the Riemann Hypothesis, although another bound is available without it.

From computer evidence, McNew [31, p. 138] estimates the exponent of t for the true

growth rate is close to ≈ 0.285. Also using numerical evidence, Tutaj [38, Conjecture H]

conjectured the exponent of t for the growth rate may be precisely half the Euler constant.

McNew [31, p. 140] also suggested that a random setup might help to clarify this rate,
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and so Robin Pemantle suggested we replace the primes with a Poisson process of intensity

f(x) = 1/ log x. The idea here is that (a) this intensity approximates how the prime number

theorem says roughly t/ log t primes have pn ≤ t, and (b) properties of the primes often agree

with properties of similar random sequences (see [37, Ch. 3 §2] or [6, Ch. 1]). Exponents

1/4 and 2/3 in Theorem 1.1 may gently guide reasonable answers for the Poisson process

with intensity 1/ log x, and conversely, knowing an exponent with the Poisson process would

lead to an interesting comparison with the prime case. To preview, we will encounter a 1/3

exponent in the 1/ log x Poisson context (see Table 1.2, plus the discussion in §1.3.4–§1.3.6

for comparison to other results in the literature, especially some by Groeneboom [19]).

1.2 The Poisson Problem

We now repeat the problem setup of §1.1 using a Poisson process, as Robin Pemantle sug-

gested. However, we consider several possible intensities. Choose a function f(x) ≥ 0

to be the intensity function of a Poisson process on (0,∞), which randomly places points

X1 < X2 < · · · onto the positive real axis (see [29] for background, or see Lemma 2.1 for a

simple construction). The choices f(x) of most interest are

1

log x
,

1

xq
,

1

x
,

1

x logq x
, or

1

x log x
, (1.1)

where from now on q ∈ (0, 1) is fixed and p = 1 − q. Since these have asymptotes at

x = 0 or x = 1, and since we are interested in tail behavior as x → ∞, we usually set

f(x) = 1[x > C]/ log x, and similarly in other cases, for some constant C. (Here 1[ · · · ]

denotes the indicator function.) Sometimes this will be explicit, but usually not.

Now, as in the prime problem in §1.1, plot (j,Xj), fill in the convex hull of the region

left of this graph, and color the points (j,Xj) blue if they are extreme points of this hull

3
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Figure 1.2: The beginning of a Poisson process with intensity f(x) = 1/
√
x.

or red otherwise. An example with f(x) = 1/
√
x is shown in Figure 1.2. The convex hull

extends upwards without end, so whether a point is extreme depends on all of the values

X1, X2, . . . , not just those Xj ≤ t. Here is the question parallel to that of §1.1.

Question 1.2. How many extreme points (j,Xj) are below height t, as t → ∞? In other

words, as t→∞, what is the behavior of

Ef (t)
def
= #

{
(j,Xj) : Xj ≤ t and (j,Xj) is a blue extreme point

}
?

This is one kind of count, but here is another. Instead of the number of extreme points

Ef (t) in a growing space, [0, t] as t→∞, we could also ask for the number of extreme points

by index: the random variable Ef (Xn) is the number of extremes among X1, X2, . . . , Xn,

4



which we can think about as n→∞. While §1.1 motivates counting by space, [0, t], it will

at times be useful to think about indices.

Remark 1.3. Given the question and the previewed 1/3 answer here, the reader might

already notice similarities to work by Groeneboom in [19]. We have many comments below,

especially in §1.3.4, §1.3.5, §1.3.6. See also §1.4. *

Although intensities in (1.1) are of most interest (particularly 1/ log x as noted in §1.1),

it is reasonable to ask this question if

∫ t

0
f(x) dx <∞ (when t <∞),

∫ ∞

0
f(x) dx =∞, and lim

x→∞
f(x) = 0. (1.2)

The first two say the process has infinitely many points but only finitely many in any

bounded region, and the last says points spread out as we look farther along the line.

1.3 Overview of Techniques, Results, & Comparisons to the

Literature

The emphasis here is not any one example or answer to Question 1.2. Rather, the interest

is in presenting various approaches, each of which can give a different kind of answer. With

that in mind, we organize the main ideas by technique, instead of by example or result.

Before continuing we should mention some notational tidbits. (More detail is in §1.5.)

First, given any particular intensity f(x), denote the mean number of points Xj in [0, t] by

λ(t) =

∫ t

0
f(x) dx. (1.3)

Second, ≈ is an intuitive statement, not a rigorous one.

5



Intensity Number nonextreme points (a.s.) Location

1/ log x =∞ Example 3.9

1/xq =∞ Example 3.8

1/x =∞ Example 3.7

1/x logq x

(0 < q ≤ 1/2) (?) Remarks 3.11 and 7.4

(1/2 < q ≤ 1) <∞ Examples 3.6 and 3.10

Table 1.1: Finitely many or infinitely many nonextreme points.

1.3.1 Technique 1. Almost-Sure Extreme or Nonextreme Counts

It is often possible to determine when almost surely all but finitely many points will be

extreme, or when there will be infinitely many nonextreme points. Table 1.1 summarizes

the results for each example. Thanks go to Da Wu and Kaitian Jin for their help in an

initial discussion of this problem, during which this Borel-Cantelli strategy took off.

Details are in §3, but here is a taste of the arguments. Notice that if consecutive slopes

between points are eventually increasing (Figure 1.3), then only finitely many points can

be nonextreme; this ultimate behavior can be verified with Borel-Cantelli. This and some

very similar observations lead to Table 1.1. Some of these related proofs are analogous to

arguments about the primes in Tutaj [38] or Pomerance [33].

1.3.2 Technique 2. Comparison of Intensities

Let f(x) = 1/xq and g(x) = 1/xq
′ be two intensities with different exponents q > q′. A

simple coupling of these two Poisson processes allows us to count the number of extreme

6



Figure 1.3: Slopes increase after one slope decrease. The fourth point onward is extreme.

points from f(x) relative to the number of extreme points from g(x), index by index. That

is, if X1, X2, . . . are the points from f(x) and Y1, Y2, . . . are the points from g(x), then we

can couple these so that

Ef (Xn) ≥ Eg(Yn).

The key proof idea is a convexity trick that Pomerance [33] used for the primes; this convexity

step will work because of the form of the intensities 1/xq, and it will show that each point

Xn is extreme whenever Yn is. This also works with more than two intensities. An example

where many exponent choices are all coupled together is shown in Figure 1.4, where we

can see certain points switch from nonextreme to extreme as we lower the intensity (move

upward along each gray line). Details are in §4.

1.3.3 Technique 3. Sampling Algorithm

As already mentioned, whether points Xj ≤ t are extreme depends also on those points

Xk > t. This suggests that to generate a sample of Ef (t)—or equivalently, to generate a

7



j

X
j

Figure 1.4: A coupling of intensities 1/xq for q = 0.05 (increasing slowest), 0.1, 0.15, . . . ,

0.4 (increasing fastest).

bona fide picture of this process with points marked extreme or nonextreme accurately—we

might need to know all of the infinitely many points. This is not so. There is a simple

strategy that checks only finitely many points and works for any intensity satisfying (1.2).

A short summary and then the details of the sampling algorithm are presented in §5.
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Xj

j
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LHS Walk

RHS Walk

X/β

Figure 1.5: The two sides of the random walk.

1.3.4 Technique 4. Expectations Asymptotically

The Borel-Cantelli results in Table 1.1 are informative for low intensities. For higher intensi-

ties, Robin Pemantle suggested the following multi-step approach (a)–(d) to find asymptotic

bounds on EEf (t) as t→∞:

(a) View the process around a point in location X (here ignoring the index) as a two-sided

random walk, and observe that if the point at X is extreme with a particular support

line, then that line is a boundary that neither side of this walk can cross (Figure 1.5).

(b) The probability of the event in (a)—where a specific point is extreme and has a given

boundary line—may be computed as follows. Rescaling the random walk to Brownian

motion, and likewise rescaling the given support-line boundary, the boundary should

become roughly parabolic. Approximate with a second-order Taylor polynomial and

9



apply results available in [17], [18], or [25], which provide the probability Brownian

motion successfully avoids a given parabola.1

(c) Use many possible slopes (Figure 1.6) to estimate the probability a point in location

X is extreme, that is, P(X is extreme | X). (The conditioning will be explained later.)

Robin actually suggested lower and upper bounds on this probability, as follows:

(i) For a lower bound on the probability that X is extreme, check just one potential

support line of some reasonable slope, β∗.

(ii) Although no one single slope β can give an upper bound on the chance X is

extreme, potential support lines may be grouped into zones, say by slopes

0 = β0 < β1 < β2 < · · · < βJ =∞, (1.4)

as in Figure 1.7. If the process remains above any support line of slope β within a

particular zone βj ≤ β ≤ βj+1, then it must avoid that zone’s two lower boundary

lines. This leads to an upper bound saying, informally,

P(X is extreme | X) =
∑

j

P
(
X is extreme with a support line in zone j

∣∣∣ X
)

≤
∑

j

[
P
(
LHS avoids line of slope βj+1

∣∣∣ X
)

· P
(
RHS avoids line of slope βj

∣∣∣ X
)]
.

(1.5)

In either case, compute as in (b) above.

(d) Finally, compute the expectation via the Mecke equation (see [29, Theorem 4.1])

EEf (t) =

∫ t

0
f(x) · P(x is extreme | x) dx. (1.6)

1To aid intuition, the reader might find Figure 1.6 below reminiscent of a picture of Brownian motion
below a parabola in Groeneboom’s paper [17, Fig. 4.1]. Of course, the curves in Figure 1.6 are not exactly
parabolas.

10
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Figure 1.6: (Top) A Poisson process and three support lines through one point. (Bot-

tom) The same process and lines after transforming to a random walk of i.i.d. steps.
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Overall, this approach computes probabilities point-by-point to estimate the expected

number of extreme points. We should mention here that Groeneboom [19, see §3] studied

a very similar problem with a related but seemingly more powerful jump-process technique.

Actually, one important step claimed without a complete proof in [19, see p. 2255] strongly

suggests that Groeneboom’s work would also apply to our problem with general Poisson

intensities. (More detail will come below in §1.3.5. See especially Remark 1.10.) A long

time passed before realizing this approach by Groeneboom [19, p. 2255] very likely also works

for our problem, and in the meanwhile, the point-by-point method was carried through for

1/ log x and 1/xq, leading to the lower and upper bounds given separately in §8–§9. So,

if one were to carry out the steps omitted by Groeneboom in [19, p. 2255], then perhaps

some of the work below in §8–§9 merely rederives in a weaker form what Groeneboom could

show using his jump process. Nevertheless, these point-by-point arguments will be included

because of their interest in connection with the prime problem of §1.1.

For 1/ log x and 1/xq, steps (b)–(c) above are fairly involved, and the upper bounds are

especially so: for these we will use the Komlós, Major, Tusnády coupling [27] and lengthy

estimates adjusted slightly from some by Groeneboom in [17]. This point-by-point approach

shares the same overarching idea as Groeneboom’s jump approach from [19]—in particular,

rescale to Brownian motion and parabola. What is more, our approach is not as precise

(or at least the estimates here are not) as what it sounds like Groeneboom’s jump-process

approach might yield [19, p. 2255] (see also Remark 1.8), so this point-by-point approach

may not have much to encourage its use in all cases.

However, the point-by-point approach is quite useful and easy to apply with low intensi-

ties, where the walks simply do not look like Brownian motion with a parabola. (From the

12



limited description Groeneboom gives in [19, p. 2255], it is not clear exactly how the jump

approach might change.) This actually helps us. With the intensities 1/x and 1/x logq x,

the difficult steps of (b)–(c) can be completely skipped. These are treated in §7.

Resulting estimates are shown in Table 1.2. (Upper bounds are within logarithmic

factors of lower bounds. See Note 1.25.) These calculations are done example by example.

With the more involved examples, 1/xq and 1/ log x, a fair amount of work is just to adjust

parabolic Taylor polynomials so that they actually satisfy inequalities (as opposed to being

approximations only). So that these details do not obscure the ideas, §1.3.5 sketches a more

general but very informal version of the lower bound argument. During this more general

argument, one can see this method for EEf (t) is tightly intertwined with and is essentially

redoing some work by Groeneboom [19, Lemma 3.1]. This is partly explained by:

Remark 1.4 (Rescaling here and in Groeneboom [19]). The rescaling factor used for the

more general but informal calculation below in §1.3.5 seems to be the same as2 the rescaling

within [19, Lemma 3.1] to Brownain motion minus a parabola. We will see it is this rescaling

factor which contributes significantly to the answers. (The rescaling is in (1.12); see also

Remark 1.12 and just above it.) Beyond this one rescaling, as just mentioned, the work below

and in [19] are similar in that both reduce to expressions derived by Groeneboom in [17]

about Brownian motion minus a parabola. It is worth noting that this process—Brownian

motion minus a parabola—was related to concave majorants of empirical distributions not

only in [19] but also in earlier papers by Groeneboom [15] and Prakasa Rao [34].

The next section, §1.3.5, will be dedicated to explaining (i) the lower bound argument,

(ii) connections with results in Groeneboom’s work [19], and (iii) other results that help
2This is not so clear unless one compares back with [15, p. 542]; see especially the factor a4/3c−2/3 in the

last displayed equation on that page.
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β0 = 0

β1

...

βj
β
βj+1

βj+1

βj

β

Figure 1.7: Slope Zones. (Left) Black lines of slopes β0, β1, . . . separate various zones. The

red line falls into the zone highlighted in blue, between slopes βj , βj+1. (Right) If the process

is above the red line, it is also above the two thickly drawn blue half-lines.

Intensity P(X is extreme | X) EEf (t) Location

1/ log x Θ̃(1/X2/3) Θ̃(t1/3) Propositions 8.2 and 9.2

1/xq Θ̃(1/X
2
3
p) Θ̃(tp/3) Propositions 8.1 and 9.1

1/x Θ(1) Θ(log t) Proposition 7.1, Lemma 7.3,

see also Proposition 7.2

1/x logq x 1− o(1) ∼ logp t/p Proposition 7.9

Table 1.2: Bounds on P(X is extreme | X) as X →∞ and EEf (t) as t→∞. See Note 1.25

about Θ̃.
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explain the connection. *

Remark 1.5 (Rescaling and parabolas). Part (b) above tells us to estimate the chance a

random walk avoids a curve by rescaling the walk to Brownian motion and simultaneously

replacing the walk’s boundary curve by a parabolic Taylor expansion. This local parabolic

expansion and rescaling method was suggested to me by Robin Pemantle, who in turn

learned the technique from Gregory Lawler. Note this description is fairly terse, and to do

this, there are really two additional stages that must happen at the start and end of the

walk:

• An extreme point sits on its convex support line, so our walk begins on its boundary

curve. Before rescaling we need to boost the walk away from the boundary, otherwise

after rescaling, the Brownian motion would hit the parabola immediately.

• Since Taylor approximations only work locally, we will need to replace them far away

from the starting point. Once the walk is relatively far away from its boundary, we

can just use a linear replacement.

In the end, calculations reduce more or less to the quantity maxt
(
Bt − 1

2 t
2
)
, and to

learn about this, (b) points to [17], [18], and [25]. References therein lead to other papers

that dealt not only with this quantity but also techniques like those just mentioned—that

is, a random walk rescaled alongside a boundary’s parabolic Taylor approximation, or a

linear-boundary argument far away from a parabolic maximum. The purpose here is not to

overview the literature, and the reader should not assume the following list is exhaustive,

but a few examples may be found in [7], [8], [3], [4, see esp. Lemmas 1(i), 5, 8], and in a sense

also [34]. If interested, a discussion about this technique and about why maxt
(
Bt − 1

2 t
2
)
is

often relevant (including further references) can be found in [25, §1.2]. *

15



Remark 1.6 (History). Again, the approach in (a)–(d) above was suggested by Robin

Pemantle. He had discussed this problem earlier with a past student who managed to draft

certain results but never published them and ceased work on the problem. Although this

unpublished manuscript was not shared with me, and although I was not told the name of

this other student, it seems appropriate to acknowledge this preceding work, which perhaps

included comparable techniques. *

1.3.5 Interlude. Extensive Comparison to Groeneboom [19], Informal

Calculation, and Related Comments

We pause now to motivate, introduce, and compare with a result from Groeneboom [19].

Introduction to Groeneboom’s Result

Earlier we contrasted Ef (t), which counts extreme points in [0, t], and Ef (Xn), which counts

extreme points amongX1, . . . , Xn. Let us examine Table 1.2 in the second context. Intensity

f(x) = 1/xq has Xn ≈ (pn)1/p, so let us set t = (pn)1/p and very, very loosely write

EEf (Xn) ≈ EEf (t). Using EEf (t) = Θ̃(tp/3) from Table 1.2 then suggests we expect ≈ n1/3

extreme points (ignoring constants and logarithms) among X1, . . . , Xn. We can do the same

thing with f(x) = 1/ log x, where Xn ≈ n log n from (3.3). This rate n1/3 is also in a very

similar problem studied by Groeneboom, who stated the following result with a proof sketch

in [19], but some details are forthcoming.

Theorem 1.7 (from Groeneboom [19, Lemma 3.1 and Theorem 3.1]). Plot the empirical

distribution Gn(x) of n i.i.d. points from a probability density g(x) and count the number

of extreme points, Nn, on this plot (see Figure 1.8). If g(x) is a decreasing density of finite

support [0, A], and if both g(x), g′(x) are continuous and remain bounded away from zero,
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then as n→∞,3





ENn ∼ k1Ig · n1/3

VarNn ∼ k2Ig · n1/3

where





Ig =

∫ A

0

(
(g′(u))2

4g(u)

)1/3

du

k1 ≈ 2.10848

k2 ≈ 1.029,

(1.7/P.G.1)

and moreover

Nn − k1Ign
1/3

√
k2Ign1/3

d⇒ N(0, 1). (1.8/P.G.2)

The resemblance between our Poisson problem and the setup for Groeneboom’s result,

Theorem 1.7, is hopefully clear: just reflect Figure 1.8 across the diagonal. Yes, some

technical details differ, however, as we have been saying already, there are close similarities

to what we do here, both in terms of results and arguments. This section compares these

extensively.

Remark 1.8 (Results and precision). To introduce Groeneboom’s results we sketched an

n1/3 rate; this is one similarity we notice immediately. However, notice that (1.7/P.G.1)

and (1.8/P.G.2) are much sharper than our calculations in Table 1.2, where we can only

give expectations up to logarithms or constants. *

Remark 1.9 (Focus on slopes vs. points). Compared to our viewpoint, the perspective

in [19] from which Groeneboom proves Theorem 1.7 is slightly different. The focus in [19]

is a process parameterized by the decreasing slope of a convex support line, which jumps

every time the support line hits a new extreme point. Groeneboom then counts the jumps.

To explain this pictorially, consider Figure 1.9, where we selected a density g(x) fitting
3We refer to (1.7/P.G.1) and (1.8/P.G.2) repeatedly below. The extra labels P.G.1 and P.G.2 should

help the reader quickly recall these are the results quoted from Piet Groeneboom.
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Figure 1.8: An empirical distribution of n samples with its extreme points marked, the

context of Groeneboom [19, §3].

Groeneboom’s theorem, sampled n = 100 points from g(x), and plotted the empirical distri-

bution Gn(x). In this picture, focus first on the green line. If the green line’s slope decreases,

the line approaches the purple one, then the orange one. Since the orange line touches a

later extreme point, Groeneboom’s process would jump ahead to that point, and the slopes

would continue decreasing while centered around that later point. In essence, Groeneboom

asks: given a slope, which point is extreme with a support line of that slope? Contrast this

to the point-by-point approach outlined in §1.3.4, which asks instead: given a particular

point and no information about the surrounding process, what slopes are likely to make this

point extreme, and how likely is it to be extreme with those slopes? With that said, in the
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Figure 1.9: An empirical distribution of n samples with the concave majorant and some

support lines, the context in Groeneboom [19, §3] and Prakasa Rao [34].

end, the work here and in [19] both reduce to Brownian motion with a parabola then build

from calculations in [17]. *

Remark 1.10. Groeneboom announced the result quoted above in Theorem 1.7 without

certain details that are forthcoming, in which he claimed to employ “a Poissonization argu-

ment together with a strong approximation” [19, see the top of p. 2255], the latter from [28],

to more carefully compute how many extreme points the jump process hits. Changing what

seems to be a typo—see Remark 1.11—it seems from [19, p. 2255] like this forthcoming work
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counts

21/3k1 log n
(
g(x)|g′(x)|

)1/3 extreme points as the slopes vary through a range g(x)± log n

n1/3
; (1.9)

Groeneboom is also able to give variances. A key question is how broadly Groeneboom can

prove (1.9) for Poisson processes. This would have interesting applications in our problem.

We will say more about (1.9) later; for now we just focus on Groeneboom’s description of

the argument, quoted above. Despite the one minor difference in perspective (Remark 1.9),

this sounds quite similar to the technique giving asymptotic expectations in §1.3.4. For one,

we already promised in Remark 1.4 that a similar rescaling will come below. Moreover,

in §9 we use the Komlós, Major, Tusnády coupling [27]; we actually use a minor adjustment

of this coupling (Lemma 9.13), which can be compared to more substantial results in [28]

(though our processes are in some sense sideways).

Later, in §10, we will also convert informally between the two problems using a rescaling

that Robin Pemantle suggested. It is possible that Groeneboom’s Poisson technique is

related to this interchange. *

Remark 1.11 (Explanation of (1.9) above). Above, (1.9) is slightly different than what

Groeneboom claimed. Since details of the proof are forthcoming, it is uncertain, however

enough of the proof is available to see [19, p. 2255] likely has a typo. Groeneboom’s claim

at the top of that page includes another factor of n1/3 in the number of extreme points the

jump process touches. Temporarily using Groeneboom’s notation, here are three distinct

suggestions that this n1/3 is a typo:

• Since Groeneboom can compare his processes Un and Ṽn on intervals that differ in

length by a factor of n−1/3, the number of jumps of Un ought to lack the extra n1/3.
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• On the first line computing ENn (what we call ENn) on p. 2255 of [19], the n±1/3

cancel, leaving a sum of just 2k1c
−1
1 log n jumps from each interval.

• In the same computation of ENn, the number of intervals considered in the sum (there

called Kn) is of order
n1/3

log n
. If we expected order n1/3 log n extreme points in every

single interval, and if we had c1 � 1, we would expect order
n1/3

log n
· n1/3 log n = n2/3

extreme points overall, rather than n1/3.

These should explain why we removed the n1/3 in (1.9). *

Additional comparisons will come later, since many are better to discuss after an informal

calculation.

Informal Calculation

Remark 1.4 and the comment above it gave two reasons to do an informal calculation: to

give a simple presentation of how to bound EEf (t) and to show similarities to (1.7/P.G.1).

We now calculate a lower bound for EEf (t) by ignoring most of the details, but still follow-

ing §1.3.4(b)–§1.3.4(c)(i) and Remark 1.5. Much of this work is redone later, but it helps to

present the rough idea. Let us focus specifically on the right-hand-side walk in Figure 1.5.

Remaining above a line of slope β∗ is equivalent (see §6.2) to the random-walk event

Sn ≥ λ(X + β∗n)− λ(X)− n for all n > 0, (1.10)

where Sn is a walk of i.i.d. Exp(1) − 1 steps. We want to know the chance (1.10) happens

as X → ∞. The most reasonable choice of slope is β∗ = 1/f(X), as we will see later

in (6.2). Since this is an informal calculation, just replace the quantity on the right by its

21



second-order Taylor expansion in n around n = 0, meaning consider instead the event

Sn ≥
1

2
β2
∗ · f ′(X)n2 =

f ′(X)

2[f(X)]2
n2

︸ ︷︷ ︸
≈λ(X+β∗n)−λ(X)−n

for all n > 0. (1.11)

The lower bound here is negative if f ′(X) < 0. Now rescale by 1/
√
N and let n = Nt where

N =

(−f ′(X)

[f(X)]2

)−2/3

=





X
2
3
p

q
if f(x) = 1/xq

X
2
3 if f(x) = 1/ log x

(so N →∞ as X →∞)

so that (1.11) says
Sn√
N
≥ 1

2
· f

′(X)

[f(X)]2
·N3/2t2 = −1

2
t2 for n, t > 0.





(1.12)

Remark 1.5 gave context for the last two steps, as well as for the next one—the random walk

boost. To clarify why this boost is necessary, notice the event
Sn√
N
≥ −1

2
t2 in (1.12) limits

to the event Bt ≥ −
1

2
t2 ∀ t > 0. This event never occurs, because S0 = 0 and B0 = 0 begin

right on the parabola, and Bt varies too widely (compare the modulus of continuity [32,

Theorems 1.13–1.14]). Rather than rescale to Brownian motion immediately at n = t = 0,

first let the walk move up to a height >
√
N , because that distance will not disappear when

we apply Donsker’s theorem:

P
(
Sn ≥

1

2
β2
∗ · f ′(X)n2

)

≥ P
(
Sn ≥ 0 for 0 < n < N and SN >

√
N
)

(teal path in Figure 1.10) (1.13)

· P
(
Sn ≥

1

2
β2
∗ · f ′(X)n2 for n > N

∣∣∣ SN =
√
N

)
(red path in Figure 1.10)

The first random walk probability is at least Ω
(

1/
√
N
)
by Lemma 2.6 below (which is essen-

tially a random walk result in Feller [13] combined with a well-known correlation inequality—
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0 N

n

0

√
N

S n

λ(X + nβ∗)− λ(X)− n
1
2β∗f

′(X)n2

Figure 1.10: The informal probability calculation.

see the references below). For the final probability,

P
(
Sn ≥

1

2
β2
∗ · f ′(X)n2 for n > N

∣∣∣ SN =
√
N

)
(1.14)

→ P
(
Bt + 1 ≥ −1

2
t2 for t > 1

∣∣∣ B1 = 0

)
(Donsker’s Theorem)

= P
(
Bt −

1

2
t2 ≤ 1 for t > 1

∣∣∣ B1 = 0

)
(reflection, Bt

d
= −Bt)

≥ P
(

max
t>0

(
Bt −

1

2
t2
)
≤ 1

∣∣∣ B0 = 0

)
(shift time back, require all t > 0).

The last probability is constant-order, since maxt
(
Bt − 1

2 t
2
)
has a positive density above

zero, as one can read off pictures given by Groeneboom [18, see Corollary 2.1 and Figure 2] or

Janson, Louchard, and Martin-Löf [25, see Theorem 2.4 and Figure 2]. This suggests (1.10)

happens with probability at least order 1/
√
N . There is also the left-hand walk on the other
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side of Figure 1.5. It is about the same, so we expect by independence

P(X is extreme | X) ' Ω

[(
1√
N

)2
]

= Ω

[(−f ′(X)

[f(X)]2

)2/3
]

as X →∞. Using this within (1.6), we see EEf (t) ought to be at least order

∫ t

0

(
(f ′(x))2

f(x)

)1/3

dx (1.15)

as t→∞, and with that we record:

Remark 1.12 (Recovery of integral, apart from constants). The informal calculation above

loosely recovers the integral Ig in (1.7/P.G.1) found by Groeneboom [19]. *

Remark 1.13 (Approximations vs. inequalities). Tracing through the inequalities and

glancing at Figure 1.10 shows replacing (1.10) by the approximation (1.11) was not okay:

the parabolic approximation is below the walk’s true boundary, so this calculation gave an

unjustified lower bound. Remark 1.5 already mentioned the fix, which is done in §8. *

Remark 1.14 (Comments on Low Intensities). With intensities 1/x or 1/x logq x, the rescal-

ing constant N in (1.12) is N = O(1), so the rescaling above does not apply. However, (1.15)

is still somewhat accurate with 1/x. *

More Comparisons

Here we explain a few more relationships between the arguments in this paper and others.

We have nearly all the context we need to discuss these now, but a few details from later

will be used. It will help to have in mind the following result by Prakasa Rao:

Theorem 1.15 (from Prakasa Rao [34, Lemma 4.1]). Keep the setup above,4 like in Fig-

ure 1.9, with the number of samples in the empirical distribution Gn growing, n → ∞.
4We should say the hypotheses in [34, Lemma 4.1] are more general than those stated in Theorem 1.7

from Groeneboom. However, a loose understanding of this result is enough here.
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Consider an interval of width ∆x around any fixed point x. If ∆x � n−1/3, then with

probability 1 − o(1), the slope of the concave majorant of Gn at x is determined by the

behavior of Gn solely on the small interval
[
x− 1

2∆x, x+ 1
2∆x

]
.

Remark 1.16 (Relevant Ranges of Slopes). Theorem 1.15 is useful to explain why relevant

rescalings and ranges of slopes are the same between our results and Groeneboom’s. When

looking for jumps, Groeneboom considers varying a prescribed slope by log n/n1/3 (see (1.9)

above from [19, top of p. 2255]). Likewise, when checking if a particular point Xn from the

1/xq process is extreme, yes we will need to check a list of slope zones as in (1.4), but in the

end the most important slopes will vary on the order5 logXn/X
p/3
n ≈ log n/n1/3, and the

rest of the slope zones will be unimportant (Lemma 9.3). Here is one explanation of this

common log n/n1/3 range of slopes and why other slopes are unnecessary. As a technical

assumption, Groeneboom requires that g′(x) remain bounded and away from zero in [19,

Lemma 3.1, Theorem 3.1], hence any interval of asymptotic width ∆x around a point x

corresponds to order-∆x variations in slopes around g(x). In other words, the variations of

slopes—not just the variations ∆x of x values—should satisfy the ∆x � n−1/3 scaling in

Theorem 1.15 from Prakasa Rao, and in that sense, log n/n1/3 � n−1/3 is just enough.

There is also a relation between Prakasa Rao’s proof of Theorem 1.15 and how we check

unimportant slope zones below Lemma 9.3. *

While Remark 1.16 emphasized that only a narrow range of slopes are key, there is a

closely related observation to make about points.

Remark 1.17 (More on Relevant Ranges). Sometimes we consider whether a point is

extreme by looking only within a relatively small neighborhood of the point. This kind of
5This is (9.5) and the loose approximation Xn = λ−1(Sn) ≈ λ−1(n) ≈ n1/p.
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local focus has of course been used before. One perfect example is Theorem 1.15 above from

Prakasa Rao. Another example discussed soon is a paper by Groeneboom [16] in stochastic

geometry.6 To clarify exactly what this means in our context, we outline two concrete

examples now.

The first example we already saw in the informal calculation, above. More fully, the

arguments in §8–§9 to determine bounds on P(X is extreme | X) will essentially only look

at the nearest ≈ N Poisson points—where N is order X
2
3
p or X2/3, as in (1.12) above. The

distant portion of the walk (called Stage III in §8) will barely affect the probability. There

are already two ways we can see order N steps are enough.

• With either intensity, a range of N points around Xn corresponds loosely to the

surrounding ≈ n2/3 points. This is the same number of points needed in the context of

Theorem 1.15 from Prakasa Rao: out of n samples total, order ∆x·n� n−1/3·n = n2/3

land in an interval of width ∆x� n−1/3 near x.

• Another way to understand the range of N steps is a scaling relation for the random

time tmax = argmaxtBt − ct2. This relation is described extremely concisely in [24,

equations (2.1)–(2.2)] or [19, Remark 2.5], for instance, and says tmax scales like c−2/3.

To use this, recall the technique in (1.12) chose the number of steps N to cancel the

parabolic constant c, meaning N3/2 ∝ 1/c. The scaling relation then says the time of

the maximum scales like order (N3/2)2/3 = N .

To discuss the second example, we need to share an idea used in [19] and [16]: in both of

these papers, Groeneboom works with processes jumping among extreme points and shows
6After a brief look at a survey article, [2], one gets the impression this same idea—looking locally or

using long-range independence—crops up commonly in stochastic geometry. This broader direction was not
explored, however it is worthwhile to say something more: Groeneboom saw parallels in [19, see pp. 2237–
2238 (bottom to top) and p. 2257] between 1/3 exponents or logarithmic rates in concave majorant results
and the stochastic geometry results he dealt with earlier in [16].
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the distant past of these processes is nearly independent of the distant future, which enables

him to use stationary sequence limit theorems. Intuitively, this says extreme points do not

have long-lasting effects. With that said, we can now preview a related argument: to prove

the extreme point count with intensity 1/x satisfies a limit (introduced soon, see (1.16)

in §1.3.6) we will use a stationary sequence idea like in [19], [16]. The goal to do this is

to show whether Xj is extreme has very limited influence on whether X` is extreme if the

indices j, ` are distant. In other words, to decide if X` is extreme, a key is to show we only

need to see a few indices around `. (See Lemma 7.8, (7.8) and below.) *

1.3.6 Technique 5. A Limit Theorem, Plus Other Conjectures Based on

Groeneboom’s Work

With intensity 1/x, among X1, . . . , Xn we expect to see order n extreme points. This is

noticeably different from the rate of n1/3 discussed in §1.3.5 above. Nonetheless we can still

use a method similar to proofs given by Groeneboom [19], namely to apply a central limit

theorem for a stationary sequence, in order to learn there is a constant µ with which

E1/x(Xn)− µn√
n

(1.16)

either converges in probability to zero or converges in distribution to some N(0, σ2). This is

worked out in §7.

For other intensities, we cannot say much that is definite, however we can invoke

Groeneboom’s work from [19, §3] at least to guess what happens. The basic idea is to rescale

a Poisson process of intensity f(x) in a way Robin Pemantle suggested so that roughly n

points of the squished Poisson process compare to n samples from a probability density

g(x) on [0, 1]. This is done in §10. This does not precisely translate between our Poisson
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context and the context in Groeneboom’s paper [19, §3], but it makes it reasonable to think

Groeneboom’s result (1.8/P.G.2) might translate back into these tentative conjectures: with

coefficients from (1.7/P.G.1) above,

(a)
E1/xq(t)− k1 ·

3q2/3

22/3p
tp/3

√
k2 ·

3q2/3

22/3p
tp/6

d⇒ N(0, 1) and

(b)
E1/ log x(t)− k1 ·

3

41/3
· t

1/3

log t√
k2 ·

3

41/3
· t

1/3

log t

d⇒ N(0, 1).

It may be that Groeneboom would be able to prove these with the argument omitted

from [19, see p. 2255], but we cannot say without knowing more (see Remark 1.10).

Remark 1.18. When trying to translate between problems, an immediate distinction be-

tween our problem and Theorem 1.7 is that Groeneboom’s work in [19, §3] concerns a finite

sample—that is, there are only n points in Figure 1.8, then the picture stops—whereas each

Poisson process above has a tail of infinitely many points. If we had not already seen Ta-

bles 1.1–1.2, we might ask a few questions about this infinite tail. Are many of these tail

points extreme? Do these tail points grow slowly enough to make many of the earlier points

nonextreme? It is possible to argue, at least for 1/xq (using Theorem 1.15 from Prakasa

Rao and (1.9) from Groeneboom to see these are local), that these tail points really do not

matter. The details are not interesting so are omitted. *

There is something interesting about the guess (b). Once translated, 1/ log x does not

formally fit Groeneboom’s context to apply (1.8/P.G.2). More precisely, when we rescale

as in §10.1, this intensity turns not into a fixed density g(x) but rather into a sequence of

densities gn(x) that change with n. In fact, whenever 0 < x < 1 is fixed as n → ∞, (10.4)
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will check

gn(x) ∼ 1 and g′n(x) ∼ 0,

showing in a sense gn(x) limits to the uniform density away from x = 0. (This is not true

if x→ 0 with n, where there is a spike and gn(x) ≈ log n.) This limit is interesting because

we know 1/ log x has EEf (t) = Θ̃(t1/3), corresponding to a guess that ≈ n1/3 points are

extreme among X1, . . . , Xn, but on the other hand the following is known:

Remark 1.19 (Uniform case). Groeneboom pointed out in [19] that when g(x) = 1 is

uniform on [0, 1], the answer is no longer (1.7/P.G.1) or (1.8/P.G.2). In this case, the

number of extreme points Nn on Gn(x) has a normal limit with mean and variance of only

log n; a brief proof of this fact is in the paper [20], however the result is attributed originally

to Sparre Andersen. Sparre Andersen [35, see §7–8] managed to find the exact distribution

of the number of extreme points in a finite sequence of sums S1, . . . , Sn of exchangeable

continuous steps. If the steps are Exp(1), this would be relevant to a constant-intensity

Poisson process (again, apart from this being a finite sequence of points). This case will not

be considered here, but see also Groeneboom’s paper [14]. *

Remark 1.20 (Compatibility with point-by-point probabilities). At least informally, the

probabilities P(X is extreme | X) for 1/ log x and 1/xq in Table 1.2 seem compatible with

this rescaling and with Groeneboom’s claim (1.9). To see this, recall the loose substitutions

Xn ≈ (pn)1/p with 1/xq or Xn ≈ n log n with 1/ log x (see (3.3) below), and substitute

these into the probabilities from Table 1.2; then for each k � n, the chance the kth largest

point is extreme should be around order 1/n2/3, ignoring logarithms. Now consider what

Groeneboom can show in (1.9), the fact from [19, p. 2255] with the correction in Remark 1.11.
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If slopes vary through g(x)± logn
n1/3 , then x varies on the order ∆x � logn/n1/3

|g′(x)| . In an interval

of this width, there are order n∆x points total, out of which (1.9) tells us the fraction that

are extreme:

�
log n ·

(
g(x)|g′(x)|

)−1/3

n∆x
� |g′(x)|2/3
n2/3 · [g(x)]1/3

.

Evaluated the rescaled density g(x) = p/xq from f(x) = 1/xq and (10.2), this quantity

is order 1/n2/3, agreeing with above. We already said that 1/ log x does not rescale to a

single density, but when evaluated along the sequence gn, the fraction above is still order

1/(n log n)2/3. *

1.4 Remaining Questions

Recall that Theorem 1.7 from Groeneboom assumed the density g(x) had a finite support.

Groeneboom conjectured this finite support assumption may be unnecessary if in (1.7/P.G.1)

the integral Ig is replaced by an integral over [0,∞), and he simulated with an exponential

distribution to show the n1/3 mean and variance results are still believable [19, pp. 2255–2256,

below the proof of Lemma 3.1]. The exponential distribution, however, is very concentrated

near zero. One may ask in light of the similarities, and in light of our order-n answers for

Poisson intensities 1/x and 1/x logq x (q > 1/2) where points spread out quickly:

Question 1.21. Do we ever encounter the rate n in Groeneboom’s problem? What if points

sampled from g(x) are well spread in a long tail, too?

One may want to look at a density like gr(x) =
r

x log1+r x
(some 0 < r ≤ 2) on x ≥ e

which has CDF Gr(x) = 1− 1

logr x
. The first and more interesting reason is that, with this
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density, an integral like Igr from (1.7/P.G.1) but integrated over [e,∞) is infinite if r ≤ 2:

∫ ∞

e

(
(g′r(x))2

gr(x)

)1/3

dx =

∫ ∞

e

r1/3
(
log1+r x+ (1 + r) logr x

)2/3

x log1+r x
dx

>

∫ ∞

e

r1/3

x(log x)(1+r)/3
dx =∞.

A second reason is if Ũ1, . . . , Ũn
iid∼ Unif(0, 1) and U1 < · · · < Un are their order statistics,

then samples Xj
def
= G−1

r (Uj) = exp

(
1

(1− Uj)1/r

)
grow very quickly, like the Poisson

intensities above. Small computer simulations were not so enlightening about what should

happen with gr.

Other unresolved questions relate to the Borel-Cantelli and coupling strategies.

Question 1.22. What answer goes in Table 1.1 for 1/x logq x when 0 < q ≤ 1/2?

Question 1.23. Is there a cutoff intensity f∗(x) below which there are finitely many nonex-

treme points and above which there are infinitely many nonextreme points? That is, are

there finitely many nonextreme points whenever f(x) � f∗(x) and infinitely many nonex-

treme points whenever f(x) & f∗(x)? Two reasonable guesses seem to be 1/x and 1/x
√

log x,

and maybe the latter is more believable.

Question 1.24. Can a relative counting property be proven for intensities besides 1/xq?

1.5 Notation

Whatever f(x) we consider, we denote the mean number of points in [0, t] or A ⊂ [0,∞) by

λ(t) =

∫ t

0
f(x) dx and µ(A) =

∫

A
f(x) dx. (1.17)

The notation 1[ · · · ] is an indicator function.
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Many arguments consider walks with exponential steps. The exponential distribution of

mean 1 will be written Exp(1), while the same distribution shifted down by a constant M

will be written Exp(1)−M . To clarify, the associated distribution function is

F (x) =





1− e−(x+M) if x ≥ −M

0 otherwise.

Nearly everywhere, we will reserve

• Sn for a random walk with i.i.d. Exp(1) steps,

• Sn for a random walk with i.i.d. Exp(1)− 1 steps, and

• Bt for a Brownian motion.

LHS and RHS abbreviate left-hand side and right-hand side, and in superscripts and sub-

scripts, L and R (such as in SRn ) denote the same. To emphasize both sides simultaneously,

sometimes we write ∗ instead (as in S∗n, where ∗ = L,R).

Most commonly, asymptotic statements will be as X →∞ (where X denotes a point of

the process) or as t → ∞. Besides the well-known big-O notations (see, for instance, [36]

or [9]) we also use a tilde to indicate omitted logarithms. For convenience, Table 1.3 sum-

marizes what all of these mean—both the notations with tildes and the notations that are

standard (though inequalities might not be in style). A tilde may hide either a logX or a

log t, depending on the context.

Note 1.25. To clarify, f = Θ̃(g) does not guarantee f = Θ[g(X) · logrX]. Said another

way, Θ̃ allows the logarithm exponents to differ (in the table, r > s).

Note 1.26. The notation ≈ means nothing except intuition.
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Notation Meaning

C
om

m
on

N
ot
at
io
ns f ∼ g f(X)/g(X)→ 1

f ≤ o(g) or f � g f(X)/g(X)→ 0

f ≤ O(g) or f . g lim sup f(X)/g(X) <∞

f ≥ Ω(g) or f & g lim inf f(X)/g(X) > 0

f = Θ(g) or f � g Ω(g) ≤ f ≤ O(g)

W
it
h
Lo

gs

f ≤ Õ(g) f(x) = O[g(X) · logrX] for some r ∈ R

f ≥ Ω̃(g) f(x) = Ω[g(X) · logsX] for some s ∈ R

f = Θ̃(g) Ω̃(g) ≤ f ≤ Õ(g)

Table 1.3: Clarification of asymptotic notations used here.
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Chapter 2

Setup

This section is a catalog of facts for use later. Before continuing, it would be useful to read

the statement of Lemma 2.1, which has a simple way to build Poisson processes. The rest

can be read as necessary, if desired.

Lemma 2.1. Let Z1, Z2, . . .
iid∼ Exp(1) with partial sums Sn =

∑n
j=1 Zj . One can generate

a Poisson process of intensity f(x) by setting Xn = λ−1(Sn), where λ(t) is defined in (1.17).

For instance, a well-known property of a rate-1 Poisson process is that the interarrival

times Xj+1−Xj are already Exp(1), and in this case we see Xn = Sn. To find this property

in general, argue as follows.

Sketch for Lemma 2.1. If we condition on Xj = x (or if we begin with a nonexistent point

X0 = 0), then the distribution function for the interarrival time Xj+1 −Xj is

y 7→ P(Xj+1 − x < y | Xj = x) = 1− e−µ(x,x+y).

Inverting this function and evaluating with a Unif(0, 1) shows a useful property: during

the interarrival waiting times, the process must accumulate an Exp(1) number of points in

34



expectation, or in other words (µ(Xj , Xj+1) | Xj) ∼ Exp(1). Using this fact and adding up

the waiting times concludes the argument.

Remark 2.2. The way interarrival times are generated in the sketch above is essentially

the same way jump times are generated by Groeneboom in [19, pp. 2249–2250]. *

We need a few estimates that will be used repeatedly. The first may be found in [12,

Ch. VII.1, Lemma 2] or [10, Theorem 1.2.6]:

∫ ∞

t

1√
2π
e−x

2/2 dx ≤ 1√
2π · t

e−t
2/2 (t > 0). (2.1)

The second estimate we will use is a large deviations result that may be found in [13,

Ch. XVI.7 Theorem 1], specialized here to our exponential-step case: if Sn is a sum of n

i.i.d. Exp(1)− 1 random variables, and if 0 < δ < 1/6, then as n→∞,

P
( Sn√

n
> nδ

)
∼
∫ ∞

nδ

1√
2π
e−x

2/2 dx ≤ 1√
2πnδ

e−n
2δ/2 (2.2)

(simply concatenating (2.1) at the end). As Robin Pemantle pointed out to me, sum-

ming (2.2) over n ∈ N and applying Borel-Cantelli quickly gives a useful estimate:

Lemma 2.3. Select 0 < δ < 1/6. If Sn and Xn are as in Lemma 2.1, then Sn = n+o
(
n

1
2

+δ
)

and Xn = λ−1
(
n+ o

(
n

1
2

+δ
))

as n→∞.

Applying exactly the same reasoning in the previous paragraph but now to the number

of points, rather than their locations, gives:

Lemma 2.4. Select 0 < δ < 1/6. The number of Poisson points in [0, t] satisfies N(t) ∼

λ(t) + o
(

[λ(t)]
1
2

+δ
)
as t→∞.

We will need several exponential random walk results. This first is available in [13]:
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Lemma 2.5. Let S̃n be a walk started at S̃0 = 0 and taking i.i.d. Exp(1)−M steps, where

0 < M < 1. Then P(S̃n > 0 ∀n > 0) = 1−M .

Proof. This probability is derived in [13], Ch. XII.4 Example (a), equation (4.5) on p. 405,

where our answer in notation there is 1− ρ(0) = αµ with α = 1 and µ = 1−M .

Lemma 2.6. Let Sn be a walk from S0 = 0 taking i.i.d. Exp(1)− 1 steps. As N →∞,

P
(
Sn ≥ 0 when 0 ≤ n ≤ N and SN ≥

√
N
)
≥ Ω

(
1√
N

)
.

The same is true if Sn instead takes (reflected) i.i.d. 1− Exp(1) steps.

Proof. By the central limit theorem, P
(
SN ≥

√
N
)

= Θ(1). Separately,

P(Sn ≥ 0 when 0 ≤ n ≤ N) ≥ Ω

(
1√
N

)

by referring to [13], pp. 414–415, Ch. XII.7 Theorem 1a and the preceding discussion. (To

verify the required condition, that
∑

n

(
P(Sn > 0)− 1

2

)
/n converges, Feller points to another

result; however, since Exp(1)− 1 steps have a third moment, it is easy to verify convergence

using the Berry-Esseen theorem, see [13], p. 542, Ch. XVI.5 Theorem 1.) Robin Pemantle

observed both of the events above are increasing, so we can immediately multiply the two

probabilities using a correlation inequality quoted below in Lemma 2.7.

The next result quoted is a continuous-variable version of a well-known correlation in-

equality of Harris [22]. The continuous version can be found in [21, Theorem 1] or [26,

eq. (1.10), Theorems 2.1, 2.3], which we specialize to events of Exp(1) variables below:

Lemma 2.7. Suppose Z1, . . . , Zn
iid∼ Exp(1) are defined as the coordinates of Ω = Rn. If

A,B ⊂ Ω are increasing events, meaning

x1 ≥ 0, . . . , xn ≥ 0 and (z1, . . . , zn) ∈ A ⇒ (z1 + x1, . . . , zn + xn) ∈ A
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and likewise for B, then P(A ∩B) ≥ P(A) · P(B).

Lemma 2.8. Suppose Sn satisfies Donsker’s theorem, meaning SNt/
√
N

d⇒ Bt as N →∞.

If a→∞ and ab→∞, then P(Sn ≥ −a− bn ∀n > 0)→ 1.

Proof. Let N = a2 with n = Nt, and suppose ab > C for some constant C. Then

P(Sn ≥ −a− bn ∀n ≥ 0) = P
( Sn√

N
≥ −a− bNt√

N
∀ t =

n

N
> 0

)

= P
( Sn√

N
≥ −1− abt ∀ t =

n

N
> 0

)

≥ P
( Sn√

N
≥ −1− Ct ∀ t =

n

N
> 0

)
.

Applying Donsker’s theorem as a→∞, then using a well-known calculation about Brownian

motion—see [10, Exercise 7.5.2]—this lower bound becomes

P(Sn ≥ −a− bn ∀n ≥ 0) & P(Bt ≥ −1− Ct ∀ t > 0) = 1− e−2C .

At last send C →∞.
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Chapter 3

Borel-Cantelli Slope Observations

Results for general intensities f(x) will be stated and proved in §3.1, then these will be

applied to one example at a time in §3.2. Once again, I appreciate help from Da Wu

and Kaitian Jin during an initial discussion of this problem, when we looked together at

particular examples and used a prototype for the proof below of (3.1).

3.1 General Observations

Let Lj denote the line segment connecting (j,Xj) to (j + 1, Xj+1), and let slope(Lj) =

Xj+1 −Xj denote its slope. In §1.3.1 and Figure 1.3 we made the following observation: if

eventually slope(Lj) < slope(Lj+1) < slope(Lj+2) < · · · , then only finitely many points are

nonextreme. We now use Borel-Cantelli with this and some similar observations.

Proposition 3.1. The following events are equal almost everywhere:



∞∑

j=1

∫ 2Xj+1−Xj

Xj+1

f(x) dx <∞





a.s.
=
{

slope(Lj) ≥ slope(Lj+1) holds only for finitely many j
}
.

(3.1)
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Xj

Xj+1

2Xj+1 −Xj

Xj+2

Xj+2

Figure 3.1: The key distance for a slope increase or decrease.

When this event occurs, all but finitely many points are extreme. When it does not occur,

there are infinitely many nonextreme points. The event (3.1) also satisfies a zero-one law.

Proof. The event that the slopes decrease around Xj+1 is the event that Xj+2 lands too

close to Xj+1; more precisely it is the event that Xj+2 ≤ 2Xj+1 −Xj (see Figure 3.1). By

a conditional version of Borel-Cantelli (see [10, Theorem 4.3.4]), the event that there are

finitely many slope decreases is almost surely the event that

∞∑

j=1

P
(
Xj+2 ≤ 2Xj+1 −Xj

∣∣∣ Xj , Xj+1

)
<∞.

The summands here are

P
(
Xj+2 ≤ 2Xj+1 −Xj

∣∣∣ Xj , Xj+1

)
= 1− e−µ(Xj+1, 2Xj+1−Xj).

For the sum of these terms to converge, the exponent must go to zero, and if so, using

limµ→0
1−e−µ
µ = 1 shows the sum converges if and only if

∞∑

j=1

µ(Xj+1, 2Xj+1 −Xj) =

∞∑

j=1

∫ 2Xj+1−Xj

Xj+1

f(x) dx

39



converges.

For the zero-one law, write Xn = λ−1(Sn) as in Lemma 2.1, with Sn the partial sum

of Z1, Z2, . . .
iid∼ Exp(1). A finite permutation of Z1, . . . , Zn can only change X1, . . . , Xn−1,

and so the permutation cannot affect convergence of the sum of integrals. This means the

Hewitt-Savage 0–1 law (see [10, Theorem 2.5.4]) applies to the left-hand event in (3.1).

Because we consider decreasing intensities f(x), simple bounds on the integral in (3.1) are

usually convenient: (Xj+1−Xj)f(2Xj+1−Xj) ≤
∫ 2Xj+1−Xj

Xj+1

f(x) dx ≤ (Xj+1−Xj)f(Xj+1).

The next few results present related techniques that are often useful to find extreme or

nonextreme points. These turn out to be exactly analogous to some results and arguments

about the primes by Tutaj [38] or Pomerance [33]. The first technique is whether slope(Lj)

generally grows but is also, however infrequently, relatively low. This is roughly the same

observation as in Tutaj [38, Proposition 2].

Proposition 3.2. Let 0 < M <∞ and assume f is decreasing. Suppose the following two

events both occur almost surely:
∑∞

j=1 f(Xj +M) =∞ and Xj � j. Then

lim inf
j→∞

slope(Lj) ≤M <∞ = lim sup
j→∞

slope(Lj),

and consequently there are infinitely many slope decreases.

This will be broken into two lemmas.

Lemma 3.3. With 0 < M <∞, these events are almost everywhere equal:



∞∑

j=1

∫ Xj+M

Xj

f(x) dx =∞





a.s.
=
{

slope(Lj) < M holds for infinitely many j
}
. (3.2)

Proof. Argue as for (3.1). First calculate

∞∑

j=1

P
(

slope(Lj) < M
∣∣∣ Xj

)
=
∞∑

j=1

P
(
Xj+1 −Xj < M

∣∣∣ Xj

)
=
∞∑

j=1

(
1− e−µ(Xj , Xj+M)

)
.
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The last sum converges if and only if

∞∑

j=1

µ(Xj , Xj +M) =
∞∑

j=1

∫ Xj+M

Xj

f(x) dx

does.

The proof of the next lemma can be compared to Tutaj [38, p. 131].

Lemma 3.4. If Xj � j almost surely, then lim supj→∞ slope(Lj) =∞.

Proof. If instead ` = lim supj→∞ slope(Lj) < ∞, wait long enough that slope(Lj) < ` + 1

when j ≥W . Then with J > W ,

XJ −X1

J
=

∑J
j=1Xj+1 −Xj

J
<

∑W−1
j=1 slope(Lj) +

∑J
j=W `+ 1

J
.

As J →∞, the final expression limits to `+ 1 <∞, meaning Xj/j must be bounded.

Proof of Proposition 3.2. Recall we assume f is decreasing. This and
∑∞

j=1 f(Xj+M) =∞

implies that (3.2) holds, so lim infj→∞ slope(Lj) ≤M . Lemma 3.4 is the rest.

Instead of looking for slope decreases and nonextreme points, we can also look for extreme

points as follows. The next result and proof very closely parallel the result and proof for

the prime case given in Tutaj [38, Proposition 1] and Pomerance [33, Theorem 2.1].

Proposition 3.5. If Xj � j almost surely, then there are almost surely infinitely many

extreme points.

Proof. If in some realization Xr is an extreme point, and if there does exists another extreme

point afterwards, call it Xs (s > r), then we would know

Xs −Xr

s− r = min
j>r

{
Xj −Xr

j − r

}
.
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On the other hand, if Xr happens to be the last extreme point, and if no extreme Xs exists

later, then necessarily the minimum does not exist; rather

inf
j>r

{
Xj −Xr

j − r

}
= lim inf

j→∞

{
Xj −Xr

j − r

}
<∞,

and the convex hull ends with a line of finite slope. By assumption this does not happen:

for any fixed r, limj→∞
Xj −Xr

j − r =∞. This shows a later extreme point Xs exists.

3.2 Examples

This section justifies Table 1.1. Throughout, Xn = λ−1(Sn) as in Lemma 2.1.

Example 3.6 (1[x > e]/x log x). We have λ(t) = log log t so that Xn = exp(exp(Sn)). By

the law of large numbers, there is an N for which Sn >
1
2n once n > N . From here we

see (3.1) almost surely holds, because once j + 1 > N ,

∫ 2Xj+1−Xj

Xj+1

f dx ≤ (Xj+1 −Xj)f(Xj+1) <
1

log(Xj+1)
=

1

eSj+1
< e−

1
2
j .

Example 3.7 (1[x > 1]/x). Here λ(t) = ln t and Xn = eSn . Then

∫ 2Xj+1−Xj

Xj+1

f dx ≥ (Xj+1 −Xj) · f(2Xj+1 −Xj) =
Xj+1 −Xj

2Xj+1 −Xj

≥ 1

2

(
1− Xj

Xj+1

)
=

1

2

(
1− e−Zj+1

) d
=

1

2
·Unif(0, 1).

A sum of uniforms diverges by Kolmogorov’s Three-Series Theorem, so (3.1) never occurs.

(Note with 1/x we can count slope decreases more carefully in §7.)

Example 3.8 (1[x > 0]/xq with 0 < q < 1 and p = 1 − q). Now λ(t) = tp/p, hence

Xn = (pSn)1/p. This means

∫ 2Xj+1−Xj

Xj+1

f dx ≥ (Xj+1 −Xj)f(2Xj+1 −Xj)

≥ Xj+1 −Xj

(2Xj+1)q
≥ 1

2q

(
Xp
j+1 −X

p
j

)
=

p

2q
Zj+1.
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Again
∑∞

j=1 Zj+1 diverges by Kolmogorov’s Three-Series Theorem, so (3.1) does not hold.

Example 3.9 (1[x > e]/ log x). We check the two conditions for Proposition 3.2. As t→∞,

we have the well-known estimates (see [36, §2.6 and §3.4])

λ(t) =

∫ t

e

1

log x
dx ∼ t

log t
and λ−1(t) ∼ t log t, (3.3)

but it is enough to use t� λ−1(t) < t2. The law of large numbers guarantees n/2 < Sn < 2n

once n > N , for some N ; selecting any fixed, positive number M , we see

1

log(Xj +M)
>

1

log(S2
j +M)

>
1

log(4j2 +M)
when j > N .

This shows
∑∞

j=1 f(Xj +M) =∞ almost surely. Also Xj > λ−1(j/2)� j.

Example 3.10 (1[x > 1]/x logq x with 1/2 < q < 1 and p = 1 − q). With this intensity,

λ(t) = 1
p logp t and λ−1(s) = exp

(
(ps)1/p

)
. Then

∫ 2Xj+1−Xj

Xj+1

f dx ≤ Xj+1 −Xj

Xj+1 logqXj+1
≤ 1

logqXj+1
=

1

(pSj+1)q/p
.

Almost surely, we eventually see Sj+1 > j/2, and then

∫ 2Xj+1−Xj

Xj+1

f dx <

(
2

p

)q/p 1

jq/p
.

Now
∑

j 1/jq/p <∞ if q/p > 1. So, if q > 1/2, then (3.1) holds.

Remark 3.11. So far, simple bounds like these do not seem precise enough when 0 < q ≤

1/2. Another approach is discussed later, in Remark 7.4 and Proposition 7.9. *
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Chapter 4

Relative Counting

In this section we simultaneously consider two Poisson processes, X1, X2, . . . from intensity

f(x) and Y1, Y2, . . . from intensity g(x). The goal is to make relative statements about the

number of extreme points.

Before continuing, we give some vague intuition. Recall there are two ways we can count

extreme points and two ways we might try to compare intensities:

(a) number of extreme points in a region of space, [0, t], comparing Ef (t) and Eg(t), or

(b) number of extreme points among certain indices, comparing Ef (Xn) and Eg(Yn).

We count like (b) here. Really, this is to recycle a trick Pomerance [33] used with the primes.

Nevertheless, counting by index is also intuitive, because when we count by space there are

competing factors. Suppose, for instance, that f(x) ≤ g(x) and these intensities are chosen

from Table 1.2. The probabilities in that table tell us that, counting by space,

• f(x) has fewer points in [0, t], but each one is more likely to be extreme, while

• g(x) has more points in [0, t], but each one is less likely to be extreme.

Proposition 4.1. It is possible to couple Poisson processes
{
X

(q)
n : n = 1, 2, . . .

}
of all
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intensities 1/xq simultaneously so that whenever 0 < q′ < q < 1,

(
n,X(q′)

n

)
is extreme ⇒

(
n,X(q)

n

)
is extreme.

This coupling gives E1/xq

(
X

(q)
n

)
≥ E1/xq′

(
X

(q′)
n

)
.

Proof. First we run the proof with only two values, 0 < q′ < q < 1. Simplify the notation

somewhat by setting Xn = X
(q)
n and X ′n = X

(q′)
n . Couple these with the same random walk

Sn of Exp(1) steps, as in Lemma 2.1:

Xn = (pSn)1/p and X ′n = (p′Sn)1/p′ ,

where p = 1− q and p′ = 1− q′ as usual. This coupling starts both processes at x = 0.

Now here is where we adapt the convexity trick that Pomerance used for the primes;

compare with [33, bottom to top of pp. 400–401]. If (m,Xm) is not an extreme point in the

q process, then there are indices `, n, with ` < m < n, so that

Xm >
n−m
n− ` X` +

m− `
n− ` Xn,

or when we divide by Xm,

1 >
n−m
n− `

(
S`
Sm

)1/p

+
m− `
n− `

(
Sn
Sm

)1/p

. (4.1)

With `,m, n fixed, and treating the random walk as temporarily fixed, too, define a function

of x by replacing the exponent 1/p with x:

h(x) =
n−m
n− `

(
S`
Sm

)x
+
m− `
n− `

(
Sn
Sm

)x
.

Note h(0) = 1 and h(1/p) < 1 by (4.1). Also, h′′(x) ≥ 0, so h(x) is convex. From there

it must also be that h(x) < 1 when 0 < x < 1/p, in particular for x = 1/p′ < 1/p. Yet,
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h(1/p′) < 1 means

X ′m >
n−m
n− ` X

′
` +

m− `
n− ` X

′
n,

showing (m,X ′m) is not extreme. As described, this coupling works with all 0 < q < 1

simultaneously.
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Chapter 5

Sampling

In this section, we describe an algorithm to generate accurate samples of Ef (t). An equivalent

goal is to generate a picture of the process inside a window of arbitrary height t = W with

all extreme points marked accurately. The difficulty here is, again, that extremeness of

Xj ≤W inside the window may depend on points Xk > W far outside of this window.

Proposition 5.1. Suppose f(x) is such that λ−1(s)� s is superlinear, where as usual λ(t)

is given by (1.3). There is an algorithm to sample a Poisson process of intensity f(x) inside

any window [0,W ] with all points accurately marked extreme or nonextreme. Equivalently,

there is an algorithm to generate samples of Ef (t).

Remark 5.2. The assumption here is no real restriction. It holds for any f(x) satisfy-

ing (1.2). Since λ(t)→∞ as t→∞, substitute s = λ(t) and use λ′(t) = f(t) to check

lim
s→∞

λ−1(s)

s
= lim

t→∞

t

λ(t)
= lim

t→∞

1

f(t)
=∞.

We emphasize λ−1(s)� s since it is the key allowing us to ignore most of the process.

One might also think about this as λ(t) � t. In the prime context (compare (3.3)
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and the prime number theorem [6, p. 10]), this is like saying the prime counting function is

sublinear, so it seems very likely that McNew [31] and Tutaj [38] checked numerical estimates

on extreme primes using some procedure like what is described below. *

To summarize the algorithm in just a few sentences, we use standard rejection-sampling

with conditioned walks to generate a sequence Sn—as usual of i.i.d. Exp(1) steps—coupled

with a time τ after which Sn > n/2. Because λ−1(s) is superlinear, we will see that

Xn = λ−1(Sn) > λ−1(n/2) will eventually sit above any potential support line to any point

inside the window; that means we only need to see finitely many points to correctly select

extreme points inside the window.

Details omitted in the last paragraph are filled in by §5.1, assuming we can generate

Sn coupled with τ . What makes this difficult is τ is not a stopping time. An algorithm to

generate Sn with τ is in §5.2, assuming it is possible to compute a particular probability

exactly. Computing this probability reduces to solving a recurrence integral equation, which

is done in §5.3 using an iterative suggestion from Robin Pemantle.

5.1 Sampling Overview

Once again, we begin with a random walk Sn of Exp(1) steps and set Xn = λ−1(Sn).

Throughout the argument, fix a number 0 < ρ < 1. This number may be freely selected

and merely replaces the 1/2 above, in Sn > n/2. Why to generalize to ρ is explained later,

in Remark 5.5, but in reading, it may help simply to think ρ = 1/2.

Lemma 5.3. Given some starting time v ≥ 0 and starting point Sv of the Exp(1) random

walk, it is possible to jointly sample (Sv+1, Sv+2, . . . , Sτ , τ), where τ ≥ v is the first time
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after which Sn ≥ ρn always; that is,

τ = inf {r ≥ v : Sn ≥ ρn at every time n ≥ r}. (5.1)

Note τ is not a stopping time.

Proof of Proposition 5.1 using Lemma 5.3. Begin by generating Xn = λ−1(Sn) for n ≤

M = max {m+ 1, N}, where m is the random index that satisfies

Xm ≤W < Xm+1,

and where N ∈ N is a deterministic index at which

λ−1(ρs) ≥ sW when s ≥ N. (5.2)

Such an index N exists, since we assume λ−1(s) � s. Starting from SM , jointly sample

(SM , . . . , Sτ , τ), τ ≥M , as in Lemma 5.3.

Now, X1 is always marked extreme, so consider any other index 1 < j ≤ m. Deciding

whether Xj ≤W is extreme amounts to examining the line

`j(n) = Xj + (n− j)sj with slope sj = max
i<j

Xj −Xi

j − i .

Here sj is the lowest possible slope from the perspective of the LHS, so it suffices to check

whether points to the right of Xj are above `j . Notice sj ≤ Xj ≤W , so that

nW = W + (n− 1)W ≥ `j(n) whenever n > 1.

Now whenever n ≥ τ , use (5.1) then (5.2) to say

Xn = λ−1(Sn) ≥ λ−1(ρn) ≥ nW ≥ `j(n).
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It remains to check whether

Xn ≥ `j(n) when j < n < τ, (5.3)

but this is possible, since we already sampled Sn at all n ≤ τ using Lemma 5.3. If (5.3) holds,

then Xj is guaranteed to be extreme; if (5.3) does not hold, then Xj is not extreme. There-

fore, marking points accurately amounts to checking (5.3) at each index j = 2, 3, . . . ,m.

5.2 Algorithmic Proof to Lemma 5.3

First, rephrase Lemma 5.3 by incorporating the drift into the walk. We may as well start

the walk at time v = 0, also. The setup is then equivalent to a walk S̃n = Sn − ρn of i.i.d.

Exp(1)− ρ steps, starting at some S̃0, and our task is to sample

(
S̃1, . . . , S̃τ , τ

)
so that S̃n ≥ 0 once n ≥ τ.

As previewed, the difficulty is τ is not a stopping time. Nevertheless, there is a way around

this if we know how to compute the function

H(h) = P
(
τ− <∞ | S̃0 = h

)
, where τ− = inf{n ≥ 0 : S̃n < 0} ∪ {+∞}. (5.4)

How to compute H(x) is explained later, in §5.3. For now we describe how to sample S̃n

with τ if H(x) is known. First we provide the algorithmic details, then we summarize the

steps with a picture. Begin with r = 0 and n0 = 0.

1. Suppose we have S̃n generated for n ≤ nr. Since S̃n has drift 1− ρ > 0, we may wait

until the first time nr+1 ≥ nr that S̃nr+1 ≥ 0. Call this height hr+1 := S̃nr+1 ≥ 0.

Update r := r + 1 and continue.

2. We have hr = S̃nr ≥ 0. Compute H(hr) (as in §5.3).
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3. Generate Ur ∼ Unif(0, 1) and compare it to H(hr). By the Markov property for S̃n,

this samples a hypothetical infinite continuation of the path S̃n for all n ≥ nr from

S̃nr = hr, and the comparison to H(hr) determines whether the rest of the walk avoids

negative values or hits them again. Here are the alternatives.

(a) If Ur > H(hr), then by definition (5.4), the hypothetical continuation of our path

(S̃n for n ≥ nr, starting from S̃nr = hr) has τ− = ∞ and avoids returning to

negative values. That is,

S̃n ≥ 0 for every n ≥ nr.

Stop and return τ := nr along with the path S̃n, n ≤ τ .

(b) If Ur ≤ H(hr), then the path from S̃nr = hr onward is going to hit negative

values again. Proceed to the next step.

4. We now generate a continuation of the path S̃n for n ≥ nr that is conditioned to hit

negative values. The ordinary one-step transition kernel for S̃n from x is

p(x, y) = e−(y−x+ρ),

since each step y − x ∼ Exp(1)− ρ. A step of the conditioned walk may be generated

by rejection-sampling y from the Doob H-transform transition kernel

pH(x, y) = p(x, y) · H(y)

H(x)

(see [30, p. 257 and p. 381]). That is, generate y from p(x, y), generate U ∼ Unif(0, 1),

and accept y if U < p(x, y)H(y), otherwise reject and regenerate y and U . This works

since H(y) ≤ 1 is a probability and x is temporarily fixed, meaning we have the bound

pH(x, y)

p(x, y)
≤ H(y)

H(x)
≤ 1

H(x)
.
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n

λ(nW )− nρ

Figure 5.1: The conditioned walk S̃n of Exp(1)− ρ steps. Recall N is the index from (5.2).

Repeatedly sampling y = S̃n+1 from pH(S̃n, ·) allows us to continue the walk until a

time nr+1 when S̃nr+1 < 0. Increment r := r + 1 and return to the first step.

As promised, we illustrate in Figure 5.1. We generate Exp(1) steps at all orange points

up to index N and further until S̃n ≥ 0 at index nr (in this picture, just one step further,

nr = N+1). Thereafter, at every such time nr when the walk crosses into positive values, we

flip a coin with probability H(S̃nr) to decide if the walk ever returns to negative values, and

if so, we take steps according to pH at purple points until that happens. In this picture, the

walk returns to negative values twice—first after one step, second after seven steps. Once a

coin-flip decides S̃n remains nonnegative, we stop at the green point. The walk transformed

by λ−1 is shown in Figure 5.2.

5.3 Computing H(x)

When x < 0, the definition gives H(x) = 1. We also know H(0) = ρ by Lemma 2.5. (Since

steps Zn − ρ ∼ Exp(1) − ρ of S̃n are from a continuous distribution, it does not matter if
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λ−1(n)

Figure 5.2: A process (corresponding to the walk in Figure 5.1) in which a small window of

points near the bottom can be marked extreme or nonextreme accurately.
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the inequality S̃n > 0 is strict.) To find other values, consider x ≥ 0 and the first step:

H(x) = E[H(x+ Z1 − ρ)]

=

∫ ∞

0
H(x+ z − ρ) · e−z dz

= ex−ρ
∫ ∞

x−ρ
H(u)e−u du (u = x+ z − ρ). (5.5)

Thanks go to Robin for the suggestion of how to solve (5.5). This is done in two steps:

• prove continuity of H by a coupling method, then

• solve on intervals iρ ≤ x ≤ (i+1)ρ successively (i = 1, 2, 3, . . . ), separately considering

in (5.5) when the steps are too short or long enough to reach the next interval.

Lemma 5.4. H(x) is decreasing, right-continuous at x = 0, and continuous elsewhere.

Proof. That H(x) is decreasing is immediate from the definition (5.4). For the continuity,

we use Robin’s coupling suggestion, as just mentioned. Define two copies of our Exp(1)

random walk, one started from height 0 and another from height ε. Write these as

S0,n = 0 +
n∑

j=1

Z0,j and Sε,n = ε+
n∑

j=1

Zε,j

and set Z0,j = Zε,j for every j ≥ 2. By the memoryless property, whenever Z0,1 > ε we may

couple to Zε,1 by letting Z0,1 = ε + Zε,1. Otherwise, draw Z0,1, Zε,1 independently. When

the first steps do couple, the two walks agree at all times except n = 0, in which case

H(0)−H(ε) ≤ P(Z0,1 < ε) = 1− e−ε → 0 when ε→ 0.

The same proof works starting at x and x+ε to showH(x)−H(x+ε) ≤ P(Zx,1 < ε)→ 0.

Now we can solve iteratively for H(x). We begin with a concrete example, the interval

0 ≤ x ≤ ρ, although the general case is no more difficult. We already know H(x) = 1 when
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x < 0 and H(0) = ρ, so when 0 ≤ x ≤ ρ, (5.5) gives

H(x) = ex−ρ
(∫ 0

x−ρ
+

∫ ∞

0
H(u)e−u du

)
.

To compute the final integral on this line, rearrange and plug in x = 0:

∫ ∞

0
H(u)e−u du =

[
eρ−xH(x)−

∫ 0

x−ρ
H(u)e−u du

]∣∣∣∣
x=0

= ρeρ −
∫ 0

−ρ
e−u du

= 1− (1− ρ)eρ.

Substituting this above, we find that whenever 0 ≤ x ≤ ρ,

H(x) = ex−ρ
(∫ 0

x−ρ
e−u du+

∫ ∞

0
H(u)e−u du

)

= ex−ρ
(
eρ−x − 1 + 1− (1− ρ)eρ

)

= 1− (1− ρ)ex.

Suppose more generally we have an expression for H(x) when x ≤ iρ. Then when

iρ ≤ x ≤ (i+ 1)ρ, (5.5) says

H(x) = ex−ρ
(∫ iρ

x−ρ
+

∫ ∞

iρ
H(u)e−u du

)

Plugging in x = iρ and rearranging, we learn

∫ ∞

iρ
H(u)e−u du = e−(i−1)ρH(iρ)−

∫ iρ

(i−1)ρ
H(u)e−u du.

The right hand side is a known quantity, so we can substitute above and find

H(x) = ex−ρ

(∫ iρ

x−ρ
H(u)e−u du+ e−(i−1)ρH(iρ)−

∫ iρ

(i−1)ρ
H(u)e−u du

)

= ex−ρ

(
−
∫ x−ρ

(i−1)ρ
H(u)e−u du+ e−(i−1)ρH(iρ)

)
when iρ ≤ x ≤ (i+ 1)ρ.
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A computer can iterate to find exact expressions for H(x) so long as ρ ∈ Q, since then every

term is of the form cxr · eax+b with a, b, c ∈ Q and r ∈ Z≥0. We can check the computer by

hand at first (see Table 5.1), but soon the calculations become tedious and a computer is

helpful. Figure 5.3 shows a picture of the function H and various choices of ρ.

Remark 5.5. One may ask how to choose ρ.7 Choosing ρ ≈ 0 will be inefficient if N

in (5.2) becomes very large. For example, f(x) = 1/
√
x has N ≥ 4W/ρ. Yet, ρ ≈ 1 might

delay τ in (5.1), as now explained. The walk S̃n from §5.2 returns to negative values until

we generate a successful coin-flip of probability 1 − H(S̃nr). Since the first positive value

S̃nr ∼ Exp(1) (memoryless), the expectation of this coin-flip probability is

E
(

1−H(S̃nr)
)

= 1−
∫ ∞

0
H(s)e−s ds = (1− ρ)eρ

as computed above. In any case, this probability is always at least 1 − H(0) = 1 − ρ.

Considering Figure 5.3, this should not be an issue unless ρ is extremely close to 1. *

7In Figures 5.1 and 5.2, ρ was artificially chosen with the walk.
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i H(x) when i/2 ≤ x ≤ (i+ 1)/2 and with ρ = 1/2

i < 0 1

i = 0 1− 1
2e
x

i = 1 1− 1
2e
x + 1

2xe
x− 1

2 − 1
4e
x− 1

2

i = 2 1− 1
2e
x + ex−

1
2

(
1
2x− 1

4

)
+ ex−1

(
−1

4x
2 + 1

2x− 1
4

)

Table 5.1: Expressions for H(x) when ρ = 1/2 and x ≤ 3/2, checked by hand and by

computer.

0 1 2 3 4 5

x

0.0

0.2

0.4

0.6

0.8

1.0

H
(x

)

ρ = 15/16

ρ = 7/8

ρ = 3/4

ρ = 1/2

ρ = 1/3

Figure 5.3: The function H(x) defined in (5.4) with various choices of ρ. The initial black

segment applies to all values ρ. Vertical lines separate the regions [iρ, (i+ 1)ρ].
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Chapter 6

Expectation Bounds: Setup

This section provides setup needed in §7–§9 to justify Table 1.2.

6.1 Transformation and Reasonable Slope Choice

The introductory sketch in §1.3.4(a) and §1.3.4(c)(i)–(ii) left a few questions unanswered.

1. How do we view the process as a random walk?

2. What slope β should we choose for the lower bound?

3. What slope zones (1.4) should we choose for the upper bound?

Selecting slope zones for the upper bound will be deferred to the proof sketch in §9.1. We

can answer both of the other questions now, though.

To view the process as two random walks, simply revisit Lemma 2.1. This tells us if

we map the Poisson process via Xn 7→ λ(Xn) − n, then we obtain a random walk of i.i.d.

Exp(1) − 1 steps. We can also transform any potential support line like so, obtaining a

nonlinear boundary that these Exp(1) − 1-step random walks must avoid. Details of the

transformation are given in §6.2, but a picture was already shown in Figure 1.6.
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Next, what is a reasonable choice for a slope β∗ to use in a lower bound

P(X is extreme | X) ≥ P(X is extreme with a line of slope β∗ | X)? (6.1)

(The conditioning will be explained later, in Remark 6.2.) From Lemma 2.3, say, we know the

plot of the points (n,Xn) ought to look something like the plot of the function s 7→ λ−1(s).

If so, a reasonable choice of slope is the slope of this curve’s tangent line at X—that is, at

height s = Si if X happens to be Xi = λ−1(Si)—but this is

(λ−1)′(Si) =
1

λ′(λ−1(Si))
=

1

f(X)
,

and so we define

β∗
def
=

1

f(X)
. (6.2)

Another way to interpret β∗ is to look back at the informal calculation in §1.3.5. There, this

slope also removes the linear Taylor term in (1.11).

Remark 6.1. With f(x) = 1/ log x, where we have (3.3), the slope β∗ = logXn ≈

log(n log n) is easily compared to the prime slopes given by McNew [31, Lemma 1]. *

6.2 Events of Interest

Using the notation of Lemma 2.1, and only temporarily including a fixed index i, the event

that Xi looks extreme to the right with slope β is (revisit Figure 1.5)

{Xi+n ≥ Xi + nβ for all n > 0}

=
{
Si +

∑n
j=1Zi+j ≥ λ(Xi + nβ) for all n > 0

}

=
{∑n

j=1Zi+j ≥ λ(Xi + nβ)− λ(Xi) for all n > 0
}

=
{
SRn ≥ λ(Xi + nβ)− λ(Xi)− n for all n > 0

}

59



where on the last line we introduce SRn , a mean-zero random walk started at SR0 = 0 with

i.i.d. Exp(1)− 1 steps (namely ZRj = Zi+j − 1 for j = 1, 2, . . . ). Similarly, the event that Xi

looks extreme to the left with slope β is

{Xi−n ≥ Xi − nβ for all 0 < n < i}

=
{
SLn ≤ λ(Xi)− λ(Xi − nβ)− n for all 0 < n < i ∧ (Xi/β)

}
(6.3)

where SLn is also a random walk started at SL0 = 0 with Exp(1)−1 steps. The final minimum,

∧Xi/β, is introduced when we apply λ, since a line of slope β through X crosses below the

horizontal axis exactly Xi/β units to the left of Xi. (See Figure 1.5.) To the left of that

crossing, all remaining points are necessarily above the line. To summarize, we define the

two events

Ei,R,β
def
=
{
SRn ≥ λ(Xi + nβ)− λ(Xi)− n for all n > 0

}
(6.4)

Ei,L,β
def
=
{
SLn ≤ λ(Xi)− λ(Xi − nβ)− n for all 0 < n < i ∧ (Xi/β)

}
. (6.5)

These lead us to introduce the following two events with a fixed location X and slope β

in mind, but with the index i dropped:

ER,β
def
=
{
SRn ≥ λ(X + nβ)− λ(X)− n for all n > 0

}
(6.6)

EL,β
def
=
{
SLn ≤ λ(X)− λ(X − nβ)− n for all 0 < n < nX

}
. (6.7)

Dropping i requires a yet-undefined index nX in (6.7). Our lower bound (6.1) in the notation

just introduced becomes

P(X is extreme | X) = P
(⋃

β≥0EL,β ∩ ER,β
∣∣ X
)

≥ P(EL,β∗ ∩ ER,β∗ | X) = P(EL,β∗ | X) · P(ER,β∗ | X).

(6.8)

We now discuss the conditioning (Remark 6.2) and the index nX (Remark 6.3).
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Remark 6.2 (Conditioning). The conditioning on X is meant to indicate that the Poisson

process has a point at X, however that point is not assumed to be the ith point for any

nonrandom i. The index, if known, would be a hindrance. If we knew X = Xi = λ−1(Si),

then the steps ZL1 , . . . ,ZLi for the LHS walk would no longer be i.i.d. Exp(1) − 1 steps;

rather these i steps would be conditioned to sum to λ(Xi) − i = Si − i. When we do not

condition on X being the ith point, we have the advantage that the distribution of the steps

ZL1 ,ZL2 , . . . is unchanged. Formally, that the process looks the same is a statement about

the Mecke equation for a Poisson process [29, see Theorem 4.1]; more specifically, ignoring

the new point at X, everything else about the process looks the same in distribution as it

did before.

Of course, if there is a point at X, there is some true but random index i such that

X = Xi, and the rest of the walk on the LHS (SLj with j > i) is meaningless. For this

reason nX must be defined carefully. *

Remark 6.3 (Index nX). Our choice of nX in (6.7) will depend on what we calculate.

However, there are two useful observations common to all situations.

• By Lemma 2.3, i ∼ Si = λ(Xi) a.s., meaning λ(X) is an asymptotically correct

estimate for the index of a point at location X.

• As already remarked (see below (6.3) on p. 60), the line of slope β crosses the horizontal

axis X/β units to the left of X, so we should take nX ≤ X/β.

For a lower bound on P(EL,β∗ | X) we may use nX = X/β∗ = X · f(X), even though it may

not always make sense. Suppose for instance that X = Xi but nX = Xf(X) > i is larger

than the true index of X. This is fine for a lower bound on P(EL,β∗ | X), because whenever

this happens the event (6.7) just requires the LHS walk to survive longer than necessary,
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which only reduces the probability. Consider the important examples:

• With f(x) = 1/xq, then i ∼ Xp
i /p > Xp

i = Xi · f(Xi), so it almost always makes sense

to look nX = Xf(X) steps to the left of X.

• With f(x) = 1/ log x, then i ∼ Xi/ logXi = Xif(Xi) by (3.3). In this case nX =

X/ logX is usually close to the true index, but it may sometimes be larger than the

true index. Again, this is fine for a lower bound.

When we look at an upper bound on P(EL,β | X) for various β, the walk is required

to survive for X/β steps leftward, so we may take any nX subject to both of the following

conditions:

• nX must be an index, so for instance nX < (1− δ) · λ(X) for δ > 0 as X →∞, and

• nX must be less than X/β.

For upper bounds we will actually use a small multiple ofX/β, for instance with f(x) = 1/xq,

we will take nX = εXp. *

Note 6.4. More correctly, we might write an index like Xp or X
2
3
p or X/ logX with floor

or ceiling functions, but we will not. Either way would not matter: one step more or one

step fewer would only ever lose or gain a constant factor in the probability.

62



Chapter 7

Intensity 1/x

Intensity 1/x is simpler than 1/xq and 1/ log x, and we can find more information about it,

so we treat it first and separately. That said, 1/x does involve a mishmash of ideas.

Partly using the random walk setup from §6, and partly using the context of slope

decreases from §3, we show expectation bounds (Lemmas 7.3(c) and 7.5) that together say:

Proposition 7.1. With intensity f(x) = 1[x > 1]/x,

1

4
log t ≤ EEf (t) ≤ log 2 log t+O(1) as t→∞.

If we count extreme points among X1, X2, . . . , Xn by index n, instead of how many occur

within [0, t], then in §7.2 we can show another kind of result. As previewed in Remark 1.17,

inspired by [19] we can use stationary sequence limits to prove:

Proposition 7.2. Let f(x) = 1[x > 1]/x and let µ, σ2 ≥ 0 be the constants defined in

Lemma 7.8. The quantity
Ef (Xn)− µn√

n
either converges in distribution to N(0, σ2), or if

σ2 = 0, converges in probability to zero.

Finally, §7.4 returns to the intensities 1/x logq x.
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7.1 Expectation Bounds

We begin with the lower bound.

Lemma 7.3. Fix intensity f(x) = 1[x > 1]/x.

(a) P(Xi is extreme) ≥ 1/4.

(b) P(X is extreme | X) ≥ 1/4.

(c) EEf (t) ≥ 1
4 log t.

Proof. The slope choice (6.2) is β∗ = 1/f(X) = X. Notice with this slope, X automatically

looks extreme to the left, since a support line crosses the horizontal axis immediately (X/β =

1 in Figure 1.5). In other words, P(EL,β∗ | X) = 1. Since we are free to ignore the LHS, we

can consider a particular point Xi rather than just a location X, so establishing (a) will be

the same as establishing (b). The relevant random walk boundary for ER,X is

λ(X + nX))− λ(X)− n = log(1 + n)− n

≤ log 2− 1

2
− 1

2
n (tangent line from n = 1).

Separate out the first step and then use the Markov property to see

P(X is extreme) ≥ P
(
Sn > −1

2n+
(
log 2− 1

2

)
∀n ≥ 1

)

≥ P(S1 > log 2− 1) · P
(
Sn > −1

2n ∀n ≥ 1
) ∗
≥ 1/4,

at
∗
≥ using Lemma 2.5 with M = 1/2. This means each of the log t points we expect within

[0, t] has a chance ≥ 1/4 to be extreme, which establishes (c) as in (1.6).

Remark 7.4. In the last proof, notice 1/x does not need parabolas but only a line as in

Remark 1.5. The same works with 1/x logq x; to keep the flow, this is delayed to §7.4. *
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We now establish an upper bound using a very different strategy.

Lemma 7.5. With intensity f(x) = 1[x > 1]/x, EEf (t) ≤ log 2 log t+O(1).

Proof. Here we count how many slope decreases occur (as in §3). Specifically, if

D(t) =
∞∑

j=1

1[Xj+2 < 2Xj+1 −Xj and Xj+1 ≤ t] (7.1)

is the number of slope decreases within [0, t] among the log t points expected there, then

EEf (t) ≤ log t− ED(t). (7.2)

To compute ED(t), note that if Xj = x ≥ 1 and x < y < z,

P(x < Xj+1 < y | Xj = x) = 1− x

y
P(y < Xj+2 < z | Xj+1 = y) = 1− y

z
,

so the joint density of (Xj+1, Xj+2) = (y, z) given Xj = x is
(
x/y2

)
·
(
y/z2

)
= x/yz2. Then

P(Xj+2 < 2Xj+1 −Xj and Xj+1 ≤ t | Xj = x)

=

∫ t

x

∫ ∞

y

x

yz2
1[z < 2y − x] dz dy

=

∫ t

x

x

y
·
(

1

y
− 1

2y − x

)
dy

= 1− x

t
− log

(
2− x

t

)
. (7.3)

Therefore, by the Mecke equation (see [29, Theorem 4.1], like in §1.3.4(d)),

ED(t) =

∫ t

1

1

x

(
1− x

t
− log

(
2− x

t

))
dx

= log t− t− 1

t
−
∫ 1

1/t

log(2− u)

u
du with u = x/t.

Using the Taylor expansion log(2− u) = log 2− 1
2u+O(u2), which is uniform over |u| ≤ 1,

ED(t) = log t− t− 1

t
−
(

log 2 log t− 1

2

(
1− 1

t

)
+O(1)

)

= (1− log 2) log t+O(1).

Substitute this into (7.2).
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7.2 Proof of Proposition 7.2

The underlying technique here, as we said above, is to use a stationary sequence with limited

dependence, inspired by the argument in [19, see the proof of Lemma 2.7 and Theorem 1.3

therein]. There are two main steps:

(i) show that the events {Xj is extreme} (for j = 1, 2, . . . ) very nearly form a stationary

sequence, and then

(ii) show the stationary versions can be combined despite limited dependence.

Part (i) consists of the setup through Lemma 7.7. The key result is Lemma 7.7(e), which

shows Ef (Xn) basically agrees with a stationary version, which we will call Ef,stat(Xn). Part

of this argument is somewhat related to [19, Lemma 2.7]. Part (ii) is Lemma 7.8, and that is

where we really use the stationary sequence idea from [19, Lemma 2.7, Theorem 1.3]. Most

of Lemma 7.8 argues about limited dependence via local quantities (compare Remark 1.17),

then it calls on a standard stationary sequence limit theorem from [5].

If one reads only the conclusions to (i)–(ii)—again, Lemma 7.7(e) and Lemma 7.8—then

it is easy to see these together complete the proof of Propositon 7.2. Unfortunately, both

parts (i)–(ii) will involve setting up more notation.

Recall we have defined the events Ej,∗,β (∗ = L,R) in (6.4)–(6.5) which incorporate the

index of a potential extreme point. Suppose we knew the behavior of the entire RHS walk,

SRn . If we did, rearranging the condition in (6.4) would say the steepest slope β with which

the RHS looks extreme is

β = Xj · min
0<n<∞

{
exp

(
SRn + n

)
− 1

n

}
.

Of course, any slope β > Xj leaves extra room on the LHS and only hurts our chances for
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an extreme point on the RHS (return to Figure 1.5), so it suffices to check slopes β ≤ Xj .

With this in mind, let

Cj
def
= 1 ∧ min

0<n<∞

{
exp

(
SRn + n

)
− 1

n

}
,

and check only whether Xj looks extreme on the LHS with slope β = Cj ·Xj :

{Xj is extreme} = Ej,L,Xj ·Cj

=
{
SLn ≤ − log (1− nCj)− n for all 0 < n < j ∧ (1/Cj)

}
def
= E(j, Cj),

where for ease of notation we define

E(j, c) =
{
SLn ≤ − log (1− nc)− n for all 0 < n < j ∧ (1/c)

}
. (7.4)

In the definition, remember that SLn depends implicitly on j. Also consider the events

Estat(j, c) =
{
SLn ≤ − log (1− nc)− n for all 0 < n < (1/c)

}
(7.5)

(which next to (7.4) lack the upper bound n < j). With fixed c these form a stationary

sequence in j. Furthermore, the events Estat(j, Cj) are stationary in j, since Cj ,S∗n are.

One might notice a slight issue here: SLn may not exist in (7.5) if j < n < 1/c. (This is

the same sort of issue as with nX in Remark 6.3.) This is no trouble here, however. We may

as well extend the random walk Sn from Lemma 2.1 leftwards, to values n ≤ 0; that is, let

S0 = 0 and Sn = −∑0
j=n+1 Zj for n < 0, where Z0, Z−1, Z−2, . . .

iid∼ Exp(1). If SLn = Sn +n

(n ≤ 0) stands in the usual relationship to Sn, as a backwards sum of 1 − Exp(1) random

variables, then we interpret Estat(j, c) as the event where a point Xj is extreme not only

among the points X1, X2, . . . of the process but even among the pretend points Xn = eSn

with n ≤ 0. Given that context, let

Ef,stat(Xn) =

n∑

j=1

1[Estat(j, Cj)]
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count the number of points Xj (0 < j ≤ n) that are extreme even among the pretend

points Xj (j ∈ Z). Lemma 7.7(e) below shows that Ef (Xn) will not meaningfully differ

from this stationary version. To prove this, we use the following large-deviations estimate,

the proof of which (omitted) is the well-known Markov-then-optimize Chernoff argument

(taking A = 1/2 and ρ1/2 = log 2− 1/2 ≈ 0.193 from now on for convenience).

Lemma 7.6. Let Sn be a sum of Exp(1) − 1 random variables. With 0 < A < 1 fixed,

define −ρA = A+ log(1−A) < 0. Then P(Sn < −An) ≤ e−ρAn.

As we said, the argument in the next lemma, in particular part (c), is slightly related

to [19, Lemma 2.7], although the purpose is slightly different.

Lemma 7.7. The stationary events and counts are related to the originals as follows:

(a) Estat(j, c) ⊆ E(j, c) when c ≤ 1/j, and Estat(j, c) = E(j, c) when c ≥ 1/j.

(b) If c < 1/j, then P
(
E(j, c)

)
≤ e−ρ1/2(j−1) once j ≥ 8.

(c) P
(
E(j, c) \ Estat(j, c)

)
≤ e−ρ1/2(j−1) once j ≥ 8.

(d) Almost surely, 1[E(j, Cj)] = 1[Estat(j, Cj)] for all but finitely many j.

(e) Almost surely, Ef,stat(Xn) = Ef (Xn) +O(1) as n→∞.

Proof. Part (a) merely distinguishes definitions (7.4) and (7.5). For part (b),

− log(1− c(j − 1))
∗
< log j

∗∗
< 1

2(j − 1);

here
∗
< is from c < 1/j, and

∗∗
< is from

log j

j − 1
≤ log 8

7
<

1

2
when j ≥ 8. (7.6)
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Put n = j − 1 in definition (7.4) to see

P(E(j, c)) ≤ P
(
SLj−1 ≤ − log (1− c(j − 1))− (j − 1)

)

≤ P
(
SLj−1 < −1

2(j − 1)
)

≤ e−ρ1/2(j−1) (Lemma 7.6).

Part (c) follows from (a)–(b). What is more, the upper bound in part (c) does not depend

on the choice of c. Therefore Borel-Cantelli with

∞∑

j=8

P
(
E(j, Cj) \ Estat(j, Cj)

)
≤
∞∑

j=8

e−ρ1/2(j−1) <∞

proves (d)–(e).

Lemma 7.8. With

µ = P(Estat(j, Cj)) and σ2 = µ+ 2

∞∑

`=2

Cov
(
Estat(1, C1), Estat(`, C`)

)
,

the quantity

Ef,stat(Xn)− µn√
n

either converges in distribution to N(0, σ2), or if σ2 = 0, converges in probability to zero.

Proof. The proof follows an idea in [19, proof of Lemma 2.7 and Theorem 1.3]—as mentioned

at the start of §7.2 and Remark 1.17—to prove limited dependence between stationary events

by swapping them with more local versions. More concretely, we will prove

Cov
(
Estat(j, Cj), Estat(`, C`)

)
≤ O

(
e−ρ1/2k

)
when j + 2k < `, (7.7)

the O constant independent of j, `, k. We will assume throughout that k ≥ 8, merely to

recycle (7.6). Once done, a stationary sequence central limit theorem in [5, Theorem 27.4]

either yields the normal limit, or if σ2 = 0, yields Var Ef,stat(Xn) = o(n).
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Define local, k-step versions of Cj and Estat(j, c), in each case only considering n < k:

C loc
j

def
= 1 ∧ min

0<n<k

{
exp

(
SRn + n

)
− 1

n

}
(7.8)

Eloc
stat(j, c)

def
=
{
SLn ≤ − log (1− nc)− n for all 0 < n < (1/c) ∧ k

}
. (7.9)

First observe that Cj , C loc
j only differ if the minimum is achieved for n ≥ k, in which case

P
(
Cj 6= C loc

j

)
≤
∞∑

n=k

P
(
SRn < log(1 + C loc

j n)− n
)

≤
∞∑

n=k

P
(
SRn < log(1 + n)− n

)
(since C loc

j ≤ 1)

≤
∞∑

n=k

P
(
SRn < −1

2n
)

(n+ 1 > k ≥ 8 and (7.6) above)

≤
∞∑

n=k

e−ρ1/2n (Lemma 7.6)

=
e−ρ1/2k

1− e−ρ1/2

= O
(
e−ρ1/2k

)
. (7.10)

Note the O constant here does not depend on j or k. Repeating the proof of Lemma 7.7(a),

(b), (c), but substituting n = k − 1 instead of j − 1, it is possible to show with any c

P
(
Eloc

stat(j, c) \ Estat(j, c)
)
≤ e−ρ1/2k,

again since k ≥ 8. Combining the last two facts, we see

P
(
Estat(j, Cj)

)
= P

(
Eloc

stat(j, C
loc
j )
)

+O
(
e−ρ1/2k

)
. (7.11)

Now if j + 2k < `, the local events Eloc
stat(j, C

loc
j ) and Eloc

stat(`, C
loc
` ) are independent, so

P
(
Estat(j, Cj) ∩ Estat(`, C`)

)

≤ P
(
Eloc

stat(j, C
loc
j ) ∩ Eloc

stat(`, C
loc
` )
)

+O
(
e−ρ1/2k

)

= P
(
Eloc

stat(j, C
loc
j )
)
· P
(
Eloc

stat(`, C
loc
` )
)

+O
(
e−ρ1/2k

)
.
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Making the same replacements again,

P
(
Estat(j, Cj)

)
· P
(
Estat(`, C`)

)

=
[
P
(
Eloc

stat(j, C
loc
j )
)

+O
(
e−ρ1/2k

)][
P
(
Eloc

stat(`, C
loc
` )
)

+O
(
e−ρ1/2k

)]

= P
(
Eloc

stat(j, C
loc
j )
)
· P
(
Eloc

stat(`, C
loc
` )
)

+O
(
e−ρ1/2k

)
.

Subtracting from the previous calculation and cancelling the product terms proves (7.7).

7.3 Computer Simulations

Simulations estimating µ in Lemma 7.8 and Proposition 7.2 suggest neither the 1/4 nor

log 2 ≈ 0.6931 from Proposition 7.1 is correct. This was simulated as follows, withN = 1000:

1. Generate the RHS walk SRn for 0 < n ≤ N .

2. Compute c = C loc
j as in (7.8) with k = N + 1. This is the maximal c so that

SRn ≥ log(1 + cn)− n for 0 < n ≤ N .

3. Generate SLn and determine whether SLn ≤ − log(1− cn)− n for all 0 < n < 1/c.

Repeating steps 1–3 onW = 107 walks, the success count is nearly Bin(W,µ), so approximate

µ ≈ µ̂ = 0.628414;

for reference, three standard deviations of µ̂ are bounded by

3

2
√
W
≈ 0.000474.

The true binomial success probability is not exactly µ, since on the RHS we must takeN <∞

to simulate. However, N = 1000 seems good enough, in that c was usually found within the

first ten steps; in other words, the sample distribution of argmin1≤n≤N

{(
eS

R
n +n − 1

)
/n
}

was focused on low values of n, as shown on the right of Figure 7.1. (Only a single walk
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Figure 7.1: Log-scale histograms presenting relevant times from simulations. (Left) For walks

that did not succeed in step 3, the first time n < 1/c at which SLn > − ln(1−cn)−n. (Right)

For all W walks, the (almost surely unique) time n ≤ N at which SRn = log(1 + cn)− n.

determined c at the 12th step.) On a related note, we see the histograms in Figure 7.1

decay roughly linearly. Since these are log-scale, they capture the exponentials in (7.10)

and (7.11).

7.4 Intensities 1/x logq x Revisited

Proposition 7.9. Fix intensity measure f(x) = 1[x > e]/x logq x, 0 < q < 1, p = 1− q.

(a) P(X is extreme | X) ≥ 1− 1

logqX
.

(b) EEf (t) ∼ logp t/p as t→∞.

Proof. Recall from Remark 7.4 that we are essentially able to repeat the argument from
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Lemma 7.3(a). For (a), since β∗ > X, ignore the LHS and use β = X to see

P(X is extreme | X) ≥ P(Sn > λ(X + nX)− λ(X)− n ∀n > 0 | X)

≥ P(Sn > n ·Xf(X)− n ∀n > 0 | X) (tangent line at n = 0)

= 1−Xf(X).

For part (b) use (1.6) to write

Ef (t) ≥
∫ t

e

(
1− 1

logq x

)
1

x logq x
dx =

logp t− 1

p
−
∫ t

e

1

x log2q x
dx,

and note the final integral is in any case o(logp t):

∫ t

e

1

x log2q x
dx =





O(1) if q > 1/2

log log t if q = 1/2

logp−q t− 1

p− q if q < 1/2.

Unfortunately, we still do not learn whether (almost surely) there are finitely or infinitely

many nonextreme points in the case q ≤ 1/2. However, we can say the following about the

proportion—that is, the ratio with N(t), the total number of points in [0, t]. Lemma 2.4

gives N(t) ≤ 1
p logp t+ o

(
logp(1/2+δ) t

)
as t→∞, so

1 ≥ E
(Ef (t)

N(t)

)
&

EEf (t)
1
p logp t+ logp(1/2+δ) t

∼ 1,

meaning the expected proportion of extreme points converges to 1.
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Chapter 8

Expectation Lower Bounds with 1/xq

and 1/ log x

This section proves the following results.

Proposition 8.1. Fix intensity measure f(x) = 1[x > 0]/xq, 0 < q < 1, p = 1− q.

(a) P(X is extreme | X) ≥ Ω
(

1/X
2
3
p
)
as X →∞.

(b) EEf (t) ≥ Ω
(
tp/3
)
as t→∞.

Proposition 8.2. Fix intensity measure f(x) = 1[x > e]/ log x.

(a) P(X is extreme | X) ≥ Ω
(
1/X2/3

)
as X →∞.

(b) EEf (t) ≥ Ω

(
t1/3

log t

)
as t→∞.

These lower bounds on EEf (t) can be predicted by the informal calculation in §1.3.5,

which already presented most of the technique—boosting, then avoiding a parabola. Let us

recap what needs to be done here.
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Remark 8.3 (Correcting the informal calculation). The argument in §1.3.5 contained an

obvious error. The parabolic approximation ended up on the wrong side of the actual

boundary (see Figure 1.10 and Remark 1.13). While the parabola was a good approximation

near the maximum at zero, far away from the maximum it overshot the boundary. The way

to fix this was already mentioned in Remark 1.5; it can be compared with techniques explicit

in [4, Lemmas 1(i), 5, 8] or implicit in [7]. All we need to do is show the walk is unlikely

to hit the true boundary far from the maximum, which can be done by swapping out the

parabolic approximation for a linear one. In other words, the fix here is twofold: (i) near the

maximum, ensure the parabola begins on the correct side of the true boundary, and (ii) far

from the maximum, avoid where the parabola overshoots the true boundary by including a

third stage of time with a linear boundary. *

We begin with 1/xq in §8.1. After focusing on the RHS of the walk, the LHS is straight-

forward. The 1/ log x case in §8.2 is basically the same, actually a bit easier.

8.1 Lower Bound: 1/xq

8.1.1 On the RHS

The event (6.6), that X looks extreme to the right with a line of slope β∗ = 1/f(X) = Xq,

is in this case

ER,Xq =

{
SRn ≥

(X + nXq)p

p
− Xp

p
− n for all n > 0

}
.

Claim 8.4. P(ER,Xq | X) ≥ Ω
(
1/Xp/3

)
as X →∞.

We will show Sn can avoid the boundary curve by succeeding in three stages—the first

two just like in §1.3.5, but with the corrections in Remark 8.3. The three-stage success is
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described below and a sample is shown in Figure 8.1. For this description, fix any 0 < ε < 1.

Stage I. Two things must happen: Sn must stay nonnegative during 0 ≤ n ≤ X
2
3
p, and

the final position must not be too low, specifically S
X

2
3 p
≥ Xp/3.

Stage II. With Sn starting at height Xp/3, again two things must happen: the walk must

remain above the red parabola when X
2
3
p ≤ n ≤ εXp, and the final height must be nonneg-

ative, SεXp ≥ 0.

Stage III. Finally, starting from height SεXp = 0, require that Sn remain above the green

line for all n ≥ εXp.

Lower bounds on the chance each stage succeeds are derived below in (8.4), (8.5),

and (8.6). Multiplying these three yields Claim 8.4. We first justify that these bounds

are on the correct side of the boundary curve and therefore really fix the issue. Note

0 < ε < 1 <
3

2− p =
−
(
p
2

)
(
p
3

) . (8.1)

Lemma 8.5. Let VU = −1
p

((
p
2

)
+ ε
(
p
3

))
> 0. If 0 ≤ n ≤ εXp, then

λ(X + nβ∗)− λ(X)− n ≤ −VU
Xp

n2. (8.2)

Proof. First, VU > 0 by (8.1). Let 0 ≤ n ≤ εXp and expand the binomial term:

(X + nXq)p

p
− Xp

p
− n =

Xp

p

∑

j≥2

(
p

j

)( n

Xp

)j
.

When j ≥ 3,
∣∣∣
(
p
j+1

)/(
p
j

)∣∣∣ = 1/(j + 1)(j − 1 − p) < 1, so the terms of the series decrease in

magnitude for j ≥ 3. Since the terms alternate and the j = 4 term is negative,

(X + nXq)p

p
− Xp

p
− n ≤

(
p
2

)
n2

pXp
+

(
p
3

)
n3

pX2p
=

n2

pXp

[(
p

2

)
+

(
p

3

)
n

Xp︸︷︷︸
≤ε

]
≤ −VUn

2

Xp
.
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0 X
2
3p εXp

n

0

Xp/3
S n

λ(X + nβ∗)− λ(X)− n
−VUn2/Xp

h3,R +m3,R(n− εX 2
3p)

Figure 8.1: Bounds (8.2) and (8.3) used to establish Claim 8.4, as well as three paths that

succeed during Stages I, II, III.

Lemma 8.6. When n ≥ εXp,

λ(X + nβ∗)− λ(X)− n ≤ h3,R +m3,R(n− εXp), (8.3)

where

m3,R =
1

(1 + ε)q
− 1 and h3,R = λ(X + εX)− λ(X)− εXp.

Proof. At time n = εXp, the true boundary (in blue) is at height h3,R, and it has slope

β∗f(X + nβ∗)− 1 =
Xq

(X + εX)q
− 1 = m3,R.

After this point one can also check the second derivative, β2
∗f
′(X + nβ∗), is negative.

We now compute the chance of success during each stage.
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Stage I. Just as in the informal calculation, revisit Lemma 2.6 to see

P(Stage I succeeds) = P
(
Sn ≥ 0 when 0 ≤ n ≤ X 2

3
p and S

X
2
3 p
≥ Xp/3

)

≥ Ω
(

1/Xp/3
)
.

(8.4)

Stage II. This is the stage with a parabolic rescaling (Remark 1.5). Setting

N =

(
Xp

2VU

)2/3

like in (1.12), only with a different constant, gives

P
(
Sn ≥ −

VU
Xp

n2 ∀X 2
3
p ≤ n ≤ εXp

∣∣∣ S
X

2
3 p

= Xp/3

)

= P

(
SNt√
N

+
Xp/3

√
N
≥ −VU

Xp
N3/2t2 ∀X 2

3
p ≤ n = Nt ≤ εXp

∣∣∣ S
X

2
3 p

= 0

)

& P
(
Bt + (2VU )1/3 > −1

2
t2 ∀ t > 0

∣∣∣ B0 = 0

)
(Donsker, and requiring all t > 0)

≥ Ω(1),

on the last line arguing like in (1.14) and referring to Groeneboom [18, Corollary 2.1 and

Figure 2] or to Janson, Louchard, and Martin-Löf [25, Theorem 2.4 and Figure 2]. Stage II

also requires a nonnegative ending height. By the central limit theorem,

P
(
SεXp ≥ 0

∣∣∣ S
X

2
3 p

= Xp/3
)
&

1

2
.

Multiplying the last two probabilities with Lemma 2.7 gives

P
(
Stage II succeeds

∣∣∣ Stage I succeeds
)
≥ Ω(1). (8.5)

Stage III. By (8.3),

P
(
Stage III succeeds

∣∣∣ Stages I, II both succeed
)

≥ P
(
Sn ≥ h3,R +m3,R(n− εXp) ∀n ≥ εXp

∣∣∣ SεXp = 0
)
→ 1,

(8.6)

the convergence to 1 by Lemma 2.8 with a = −h3,R = Θ(Xp) and b = −m3,R = Θ(1).
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0 X
2
3p εXp

n

0

−Xp/3

S n

λ(X)− λ(X − nβ∗)− n
VLn

2/Xp

h3,L +m3,L(n− εX 2
3p)

Figure 8.2: Bounds used to establish Claim 8.9.

8.1.2 On the LHS

We now switch to the event (6.7), but apart from dealing with the index nX = Xf(X) = Xp

(Remark 6.3), very little is different. The three-stage procedure is exactly the same as on

the RHS, only the inequalities are flipped positive to negative (Figure 8.2).

Stage I. Require Sn ≤ 0 during 0 ≤ n ≤ X 2
3
p with final height S

X
2
3 p
≤ −Xp/3.

Stage II. Continuing from height −Xp/3, require that Sn remain below the red parabola

while X
2
3
p ≤ n ≤ εXp and end at a height SεXp ≤ 0.

Stage III. Beginning at height zero, require that Sn remain below the green line when

n > εXp. (We only need n < nX , but for a lower bound this is unimportant.)

The bounds in Figure 8.2 are stated below, but the proofs are omitted; they are similar
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to those of (8.2) and (8.3).

Lemma 8.7. Let VL = q/2. If 0 ≤ n ≤ Xp,

λ(X)− λ(X − nβ∗)− n ≥
VL
Xp

n2.

Lemma 8.8. If n ≥ εXp, then

λ(X)− λ(X − nβ∗)− n ≥ h3,L +m3,L(n− εXp),

where

m3,L =
1

(1− ε)q − 1 and h3,L = λ(X)− λ(X − εX)− εXp.

Calculations just like (8.4), (8.5), and (8.6) above establish:

Claim 8.9. P(EL,Xq | X) = Ω
(
1/Xp/3

)
as X →∞.

Proof of Proposition 8.1. For part (a), use (6.8) and multiply the probabilities in Claims 8.4

and 8.9. Part (b) is then from (a) and (1.6).

8.2 Lower Bound: 1/ log x

The strategy for this case is very similar to the one for 1/xq. We consider (6.6)–(6.7) with

β∗ = logX and nX = X/ logX as in Remark 6.3. Here are the relevant bounds for the

RHS. (Proofs are delayed briefly.)

Lemma 8.10. Let VU = log 2
2 log(2e) . When 0 < n ≤ X

logX ,

λ(X + n logX)− λ(X)− n ≤ −VUn
2

X
.

Lemma 8.11. When n ≥ X
logX ,

λ(X + n logX)− λ(X)− n ≤ h3,R +m3,R

(
n− X

logX

)
,
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where

m3,R =
logX

log(2X)
− 1 and h3,R = λ(2X)− λ(X)− X

logX
.

Note here that m3,R = −Θ(1/ logX) → 0 is not order 1, as it was with intensity 1/xq.

However, by Lemma 8.10 we also have h3,R ≤ −
VUX

log2X
. This means |h3,R ·m3,R| → ∞, so

we can still apply Lemma 2.8. Repeating what we did with 1/xq:

Stage I. Require Sn ≥ 0 during 0 ≤ n ≤ X2/3 with ending height SX2/3 ≥ X1/3.

Stage II. Continuing from height X1/3, require that Sn remain above the parabola given

in Lemma 8.10 during X2/3 ≤ n ≤ X
logX . Also require SX/ logX ≥ 0.

Stage III. Starting from height zero, require that Sn remain above the line in Lemma 8.11

for n ≥ X
logX .

The LHS is nearly the same as above with the expected reflection. However, since

nX = X/β∗ = X/ logX steps are already covered by Stage II, the walk may end there. The

only bound needed for the LHS is as follows.

Lemma 8.12. Let VL = 1/2. If 0 < n ≤ X
logX ,

λ(X)− λ(X − n logX)− n ≥ VL
X
n2

Proof of Proposition 8.2. Part (a) is as above for 1/xq, computing the chance the three

stages succeed on each side. For part (b), use (1.6) to say

EEf (t) ≥
∫ t

e

1

log x
· Ω
(

1

x2/3

)
dx ≥ 1

log t

∫ t

e
Ω

(
1

x2/3

)
dx ≥ Ω

(
t1/3

log t

)
.

We now return to the boundary calculations above. Lemma 8.11 may be checked like (8.3)

and so its proof is omitted. The remaining two are triangular area calculations.
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X − n logX X X + n logX 2X

1

logX

1

log(2X)

1/ log t

Figure 8.3: Triangular area approximations. The blue region is scaled down by a factor

n logX/X from the red triangle, which has two corners along the curve 1/ log t. The upper

boundary to the green triangle is the tangent line to 1/ log t at t = X.

Proof of Lemma 8.10. Computing the area of the blue triangle in Figure 8.3 at
4
<,

λ(X + n logX)− λ(X)− n =

∫ X+n logX

X

1

log t
− 1

logX
dt

4
< −1

2

width︷ ︸︸ ︷
(n logX)

height︷ ︸︸ ︷(
n logX

X

)
·
(

1

logX
− 1

log(2X)

)
= −

(∗)︷ ︸︸ ︷(
logX · log 2

2 log(2X)

)
·n

2

X
.

The coefficient (∗) is increasing, because
d

dx

[
log x

log(2x)

]
=

log 2

x log2(2x)
> 0, so we can replace

it by VU =
log e · log 2

2 log(2e)
.

Proof of Lemma 8.12. The green triangular area in Figure 8.3 gives

λ(X)− λ(X − n logX)− n

=

∫ X

X−n logX

1

log t
− 1

logX
dt
4
>

1

2
(n logX)2

(
1

X log2X

)
=

n2

2X
.
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Chapter 9

Expectation Upper Bounds with 1/xq

and 1/ log x

This section proves the remaining upper bounds for Table 1.2. As usual, in each of the next

results, (b) follows from (a) via (1.6). Note the upper bounds match the lower bounds in §8

apart from hidden factors of logX in (a) or log t in (b).

Proposition 9.1. Fix intensity measure f(x) = 1[x > 0]/xq with 0 < q < 1, p = 1− q.

(a) P(X is extreme | X) ≤ Õ
(

1/X
2
3
p
)
as X →∞.

(b) EEf (t) ≤ Õ
(
tp/3
)
as t→∞.

Proposition 9.2. With the intensity measure f(x) = 1[x > e]/ log x,

(a) P(X is extreme | X) ≤ Õ
(
1/X2/3

)
as X →∞.

(b) EEf (t) ≤ Õ
(
t1/3
)
as t→∞.
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9.1 Proof of Proposition 9.1(a)

The upper bound, though more involved than the lower bound, follows the relatively straight-

forward idea suggested by Robin Pemantle, outlined briefly in §1.3.4(c)(ii). Recall this ar-

gument came down to selecting zones (1.4) to evaluate (1.5). To avoid losing the key idea

amid technicalities, this section gives a detailed proof sketch using certain unjustified equa-

tions, lemma statements, and incomplete definitions. For a complete argument, there are

mid-proof pointers to the omitted details.

Here is how to prove the proposition. Since β∗ = Xq was a convenient slope choice,

parametrize our slope zones as βj = αjX
q, where

0 = αI0 < · · · < α−2 < α−1 < α0 < α1 < α2 < · · · < αI1 =∞, (9.1)

is some sequence of coefficients we will choose later. Our first step is to discard the ends

of (9.1). Specifically, if either |αj − 1| > 1/2 or |αj+1 − 1| > 1/2, then one of the two

probabilities shown in (1.5) is small. More formally:

Lemma 9.3. There are constants c, ν > 0 so that

P(X is extreme | X) ≤ P
(⋃
|α−1|≤1/2EL,αXq ∩ ER,αXq

∣∣∣ X
)

+O
(
e−cX

ν)
. (9.2)

Remark 1.16 mentioned that Lemma 9.3 relates to Theorem 1.15 by Prakasa Rao [34,

Lemma 4.1]; the proofs both rely on the same underlying idea—that a distant point is

unlikely to overcome the wrong slope. With that said, here is a two-sentence proof of

Lemma 9.3. Figure 1.6 shows α = 1 in blue and shows how mild adjustments to a support

line slope will, after transformation, shift and raise the boundary curve. This effect becomes

stronger as X → ∞, so if α 6≈ 1, then either on the left or on the right our mean-zero
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walk must climb over a steep hill, and this is unlikely. The full proof (in §9.2) is only more

involved because we need careful estimates for the true boundary curves.

We now aim to determine a sequence

1

2
= α0 < α1 < α2 < · · · < αJ−1 < αJ =

3

2
. (9.3)

That is, in (9.1) it will suffice to set α−1 = 0, αJ+1 =∞ and I0 = −1, I1 = J + 1. Although

parametrizing slopes as αXq is initially convenient, as we approach α = 1 there is a better

scale. We will describe our choice (9.3) by determining a sequence

− Xp/3

(2q)1/3 logX
= κ0 < κ1 < · · · < κJ−1 < κJ =

Xp/3

(18q)1/3 logX
(9.4)

and declaring

κj =

(
αj − 1

α
2/3
j

)
· Xp/3

q1/3 logX
. (9.5)

Note this is indeed a reparametrization: (α − 1)/α2/3 strictly increases when 0 < α < ∞.

(Again, this is the slope rescaling we compared with [19, Lemma 3.1] in Remark 1.16.)

The choice (9.5) will seem more natural and convenient once we make (1.5) precise

and set up the Brownian motion approximation. Unlike the lower bound, where we used

Donsker’s Theorem, here we need a Brownian motion coupling derived from Komlós, Major,

and Tusnády [27]. Extending (9.2) with the idea in (1.5) and this coupling will lead to

P(X is extreme | X)

≤ O
(
e−cX

ν)
+O

(
1

X
2
3
p

)
+

J−1∑

j=0

D(−κj , HR, T )D(ζκj+1, HL, T ),

(9.6)

which requires significant explanation.

• The initial O probability loss is from (9.2), to discard |α− 1| > 1/2.
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• We incur the second O because we use the Komlós, Major, and Tusnády [27] coupling.

Loosely stated, their result couples a walk and Brownian motion so that the worst-case

vertical difference, maxt

∣∣∣SNt√
N
−Bt

∣∣∣ ≤ H, is very likely to be small. For the RHS and

LHS we will call these worst-case distances HR and HL; both are Θ(logX/Xp/3). The

coupling will be run during times 0 ≤ t ≤ T = logX.

• The function D(κ,H, T ) will be a probability defined in terms of the coupled Brownian

motion. When this Brownian motion coupling is good,

– the event defining D(−κj , HR, T ) will cover the RHS event ER,αjXq , and

– the event defining D(ζκj+1, HL, T ) will cover the LHS event EL,αj+1Xq .

More precisely, the function D(κ,H, T ) represents the probability that Brownian mo-

tion remains for time T = logX above a parabola if started H units above it. Here κ

controls where along the parabola the Brownian motion starts. (For intuition, suppose

Figure 1.6 showed parabolas with different κ values.) The probabilities represented by

D(κ,H, T ) will be estimated using techniques from Groeneboom’s paper [17].

• The factor ζ def
= 1− 1

log4X
= 1− 1

T 4 allows the LHS and RHS to use different parabolic

bounds for the curves in Figure 1.6. (The reason for these to differ is the same as

in §8, Remark 1.13, and Remark 8.3, namely, to keep the parabolic bounds on the

appropriate side of the boundary.)

See §9.3 for all the missing definitions, as well as a proof of (9.6).

We will prove (in §9.4) the following bound on D(κ,H, T ) by repeating detailed calcu-

lations in Groeneboom’s paper [17, §5] with only minor adjustments:

Lemma 9.4. Let T = logX and H = O
(
logX/XΞ

)
for some fixed exponent 0 < Ξ ≤ 1/3.
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κ· · ·· · ·

D(ζκj+1, HL, T ) ·D(−κj , HR, T )

intermediate κj

1/41/3

1/2
1/3

−1/41/3

−1/2
−1/3

κ0 κJ

Figure 9.1: The sequence of κj values.

As X →∞,

D(κ,H, T ) ≤





Õ
(
Heκ

3T 3/6
)

if |κ| ≤ 1/41/3

1 always.

(9.7)

Note 9.5. We use Ξ = p/3 now, with f(x) = 1/xq, and Ξ = 1/3 later, with f(x) = 1/ log x.

The benefit of Lemma 9.4 is the factor H in (9.7). If we pop factors HR ·HL out of the

sum (9.6), and if we can control the remaining sum, we will be done: remember part (a) is

to show P(X is extreme | X) ≤ Õ(X−
2
3
p) = Õ(HR ·HL), and the first two O terms in (9.6)

are small enough already. To control the sum and only gain factors of T = logX (which

absorb into the Õ), we choose the slope zones carefully. The basic idea of these zones is

sketched in Figure 9.1, which has dots along the κ axis representing values κj we should

select for our sequence. More formally (in §9.5) we will show:

Lemma 9.6. With ζ = 1− 1
T 4 , we can define the sequence κ1, . . . , κJ−1 so that:

(a) κj is a strictly increasing sequence,

(b) −1/2 = κ1 < ζκ1 < −1/3,

(c) 1/3 < κJ−1 ≤ 1/2,
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(d) the intermediate terms are close enough that

ζκj+1 − κj ≤
1

T 3
when 1 ≤ j ≤ J − 2, (9.8)

(e) the number of terms in the sequence satisfies J ≤ O(T 4).

Using these conditions we now check (9.6) has the desired order by looking at the sum

term by term. First, we show the j = 0 and j = J −1 terms are both smaller than required.

• In the term j = 0 (red pair in Figure 9.1), look at the factor D(ζκ1, HL, T ). Since

−1/41/3 < −1/2 < ζκ1 < −1/3, by (9.7),

D(ζκ1, HL, T ) ≤ Õ
(
HLe

−T 3/6·33
)
,

which is exponentially small. We may simply bound D(−κ0, HR, T ) ≤ 1.

• When j = J − 1 (in green), then we do the same, vice versa. We can bound the LHS

factor by D(ζκJ , HL, T ) ≤ 1 and focus on the RHS: since −1/2 ≤ −κJ−1 < −1/3,

D(κJ−1, HR, T ) ≤ Õ
(
HRe

−T 3/6·33
)
.

Again, these estimates show the j = 0 and j = J − 1 terms are exponentially smaller than

required.

For the intermediate terms, 1 ≤ j ≤ J − 2 (in blue), remember that (9.6) has the RHS

and LHS κ values move across the diagram in tandem, always in pairs κj , κj+1. These pairs

of κ are close enough to satisfy (9.8), so by the identity a3 − b3 = (a− b)(a2 + ab+ b2),

(ζκj+1)3 − κ3
j = (ζκj+1 − κj) ·

(
(ζκj+1)2 + ζκjκj+1 + κ2

j

)
︸ ︷︷ ︸

O(1)

≤ O
(
1/T 3

)
. (9.9)

Here one can check both |ζκj+1| ≤ 1/41/3 and |−κj | ≤ 1/41/3, so we can apply (9.7) to both
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sides. Then using (9.9) gives

D(−κj , HR, T ) ·D(ζκj+1, HL, T )

≤ Õ
[
HR ·HL · exp

(
1

6
T 3
[
(ζκj+1)3 − κ3

j

])]

≤ Õ
(
HR ·HL · eO(1)

)

= Õ
(
X−

2
3
p
)
.

To conclude, Lemma 9.6 guarantees the total number of these intermediate terms in the

sum (9.6) is fewer than order T 4, which is a factor absorbed by the Õ. This proves the

proposition (after filling the gaps).

9.2 Restriction to α ≈ 1

Recall (6.6)–(6.7), the events that X looks extreme to the right or to the left with a given

slope β. In this case

ER,β
def
=

{
SRn ≥

(X + nβ)p

p
− Xp

p
− n when n > 0

}

EL,β
def
=

{
SLn ≤

Xp

p
− (X − nβ)p

p
− n when 0 < n < nX

}
.

Here we take β = αXq and nX = εXp with ε small. Remembering Remark 6.3 and calcu-

lating X/β = Xp/α and λ(X) = Xp/p, this is valid so long as

ε < min{1/α, 1/p}. (9.10)

We begin by stating more parabolic bounds. Proofs of (9.11) and (9.12) below are

omitted, since they are just like for (8.2), with binomial expansion.

Lemma 9.7. If 0 ≤ n ≤ Xp,

(X + nαXq)p

p
− Xp

p
− n ≥ − qα

2

2Xp
n2 + (α− 1)n. (9.11)
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Lemma 9.8. If 0 ≤ n ≤ εXp,

Xp

p
− (X − nαXq)p

p
− n ≤ α2Cε,α

Xp
n2 + (α− 1)n (9.12)

where

Cε,α =
1

p

∞∑

j=2

∣∣∣∣
(
p

j

)∣∣∣∣(εα)j−2. (9.13)

Proof of Lemma 9.3. We are going to use the parabolic bounds to show that if the two-sided

random walk avoids a line whose slope has |α− 1| > η, then on one of the two sides, an

event of exponentially small probability has occurred. The lemma is just the case η def
= 1/2.

Specifically, we use (2.2) with a few choices of a, b > 0 to say

P(|SaXp | > bXp) = P

(∣∣∣∣
SaXp√
aXp

∣∣∣∣ >
bXp/2

√
a
� Xp/6

)
≤ O

(
e−c1X

c2
)
.

First suppose α ≥ 1 + η and set n = δXp with δ ≤ 1 to be chosen. By (9.11), the walk

on the RHS is required to satisfy

SRn ≥ −
qα2

2Xp
n2 + (α− 1)n =

(
−qα

2δ2

2
+ (α− 1)δ

)
Xp. (9.14)

Now optimize in 0 ≤ δ ≤ 1:

• If α−1
qα2 ≥ 1, set δ = 1 so that (9.14) becomes

SRn ≥
(
−qα

2

2
+ (α− 1)

)
Xp ≥ α− 1

2
Xp ≥ η

2
Xp =

1

4
Xp. (9.15)

• If α−1
qα2 ≤ 1, set δ = α−1

qα2 so that (9.14) requires

SRn ≥
(α− 1)2

2qα2
Xp.

Since (α− 1)2/α2 is minimized among α ≥ 1 + η when α = 1 + η,

SRn ≥
(α− 1)2

2qα2
Xp ≥ η2

2q(1 + η)2
Xp =

1

18q
Xp. (9.16)
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One of these two cases holds, so either (9.15) or (9.16) says SRn ≥ Ω(Xp) in n = δXp ≤ Xp

steps. The initial discussion now applies.

If α ≤ 1 − η, the argument is similar, but we use the LHS. We must be careful with ε

and Cε,α, so we set this up. Since 1/α > 1, we may temporarily choose ε def
= 1/2 < 1 to

satisfy (9.10). Substituting n = δXp in (9.12) with 0 < δ ≤ ε, we require

SLn ≤
(
α2C1/2, 1δ

2 − (1− α)δ
)
Xp

by using Cε,α < C1/2, 1. The rest of the argument is similar to the one above on the RHS.

9.3 Technical Setup, Definitions, & Proof of (9.6)

9.3.1 Technical Setup

In light of Lemma 9.3 we now consider only 1/2 ≤ α ≤ 3/2. For the remainder of the upper

bound proof, when we use the LHS bound (9.12) we let ε → 0 in a way depending on X.

Notice (9.10) is now automatically valid, though this is not the reason to have ε → 0. The

choice of exactly how ε varies will seem unusual until we construct the sequence of κ values

at the end, where we will want ε, ζ as in (9.18) below.

In (9.13), use α ≤ 3
2 , ε→ 0, and 1

p

∣∣∣
(
p
j

)∣∣∣ = (1−p)(2−p)···(j−1−p)
j! ≤ q

2 when j ≥ 2 to say

Cε,α ≤
q

2

∞∑

j=2

(
3

2
· ε
)j−2

=
q/2

1− 3
2ε

def
=

1

2
Cε. (9.17)

Here Cε depends on ε, hence on X, but not dramatically: Cε → q. From this definition,

1 ≥ q

Cε
= 1− 3

2
ε.

Now suppose 3δ ∼ 3
2ε with δ = 1/ log4X. Comparing to the expansion (1− δ)3 = 1− 3δ +
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O(δ2) as δ → 0, we may define ε in such a way to have the key equality

ζ
def
=

(
q

Cε

)1/3

= 1− 1

log4X
, meaning ε ∼ 2

log4X
. (9.18)

Before moving on, we rescale (9.11) and (9.12) the same way we did (1.12). Notice (9.20)

below merely restates (9.12) including Cε,α ≤ 1
2Cε. To obtain (9.19) and (9.21), complete

the square and change notation.

Lemma 9.9. If 0 ≤ n ≤ Xp,

1√
N

(
(X + nαXq)p

p
− Xp

p
− n

)
≥ −1

2
(t− θ)2 +

θ2

2
(9.19)

where N = (Xp/qα2)2/3, n = Nt, and θ = X
1
3
p(α− 1)/(qα2)1/3.

Lemma 9.10. If |α− 1| ≤ 1/2, ε is as in (9.18), Cε is as in (9.17), and 0 ≤ n ≤ εXp, then

Xp

p
− (X − nαXq)p

p
− n ≤ α2Cε

2Xp
n2 + (α− 1)n. (9.20)

Also in this case,

1√
N

(
Xp

p
− (X − nαXq)p

p
− n

)
≤ 1

2
(t+ θ)2 − θ2

2
(9.21)

where N = (Xp/α2Cε)
2/3, n = Nt, and θ = X

1
3
p(α− 1)/(α2Cε)

1/3.

9.3.2 Coupling and Proof of (9.6)

Recall from above T = logX and the values N∗, θ∗ used with the RHS in (9.19) and with

the LHS in (9.21):

NL =

(
Xp

Cεα2
j+1

)2/3

NR =

(
Xp

qα2
j

)2/3

θL =
Xp/3(αj+1 − 1)

(α2
j+1Cε)

1/3
θR =

Xp/3(αj − 1)

(α2
jq)

1/3
.
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The indices of α on each side differ because the LHS and RHS walk through the list of

adjacent αj in tandem. It is now convenient to recall (9.5) and the definition of ζ from (9.18),

to say

θL = ζκj+1T θR = κjT.

Note 9.11. The constants distinguishing NL, NR are unimportant within a O: remember

that Cε → q and 1/2 ≤ αj ≤ 3/2, so each N∗ = Θ(X
2
3
p).

We now need to couple the random walk to Brownian motion. To do so, we quote the

following theorem, which is a special case of the Komlós, Major, Tusnády coupling [27,

Theorem 1]:

Theorem 9.12. Suppose Sn is a random walk of i.i.d. Exp(1)−1 steps and Bt is a standard

Brownian motion. There are constants C1, C2, C3 > 0 so that for any N,T, x,

P
(

max
n=0,1,...,NT

∣∣∣∣
Sn√
N
−Bn/N

∣∣∣∣ ≥
C1 log(NT ) + x√

N

)
≤ C2 exp(−C3x). (9.22)

We need two minor modifications: (i) double the result to a two-sided walk and (ii) keep

the walk and Brownain motion close at times t 6= n/N , besides just the integral times. The

adaptation of (9.22) that we use is this:

Lemma 9.13. Suppose for ∗ = L,R, each of S∗n is a random walk of i.i.d. Exp(1)− 1 steps

and each of B∗t is a standard Brownian motion. View S∗n as a polygonal path by setting

S∗n+t = (1− t)S∗n + tS∗n+1 with t ∈ [0, 1].

With C0 = 2(C1 + 1/C3)—the latter constants from Theorem 9.12—let

F∗ =

{
max

0≤t≤T

∣∣∣∣
S∗N∗t√
N∗
−B∗t

∣∣∣∣ ≥
C0 log(N∗T )√

N∗

}
(∗ = L,R) (9.23)
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Figure 9.2: Relevant distances between paths. The green path is within 1
2C0 of the red path,

which is within another 1
2C0 of the blue path. (These paths are not a true sample from the

coupling in [27, Theorem 1], but the picture is sufficient for intuition.)

denote the events where, on one particular side, the polygonal walk moves far apart from

its Brownian motion at any time. Then P(FL ∪ FR) ≤ O
(

1

NLT
+

1

NRT

)
.

Proof. It is enough to look at one side and drop the ∗. Setting x = 1
C3

log(NT ), by (9.22),

P

(
max

n=0,1,...,NT

∣∣∣∣
Sn√
N
−Bn/N

∣∣∣∣ ≥
1
2C0 log(NT )√

N

)
≤ O

(
1

NT

)
. (9.24)

We now fill in the intermediate times. To say what this means, consider Figure 9.2 (not

a true sample, but sufficient for intuition). By (9.24), the red path remains within 1
2C0

of the blue exponential steps at times n/N . On any of the NT intervals t ∈
(
n
N ,

n+1
N

)
,

the green Brownian motion behaves as a bridge of length ` = 1/N relative to the red line

segment connecting Bn/N to B(n+1)/N . We can check as follows that no green bridge of
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length ` deviates by more than another 1
2C0 from any red line segment. Rescale and use the

Kolmogorov-Smirnov statistic [10, equation (8.4.12)] to bound

P
(

max
0≤t≤`

∣∣∣∣Bt −
t

`
B`

∣∣∣∣ <
C0

2

)
= P

(
max

0≤s≤1
|Bs − sB1| <

C0

2
√
`

)
(set t = `s)

=
∑

j∈Z
(−1)je−j

2C2
0/2` ≥ 1−

∑

j 6=0

e−|j|C
2
0/2` = 1− 2

eC
2
0N/2 − 1

.

To guarantee all NT bridges are small, note

[
P
(

max
0≤t≤`

∣∣∣∣Bt −
t

`
B`

∣∣∣∣ < C0

)]NT
≥
[
1− 2

e−C
2
0N/2 − 1

]NT
= 1−O

(
2NT

e2C2
0N − 1

)
,

and the last error is again O(1/NT ), since N � T .

With N∗, T as above, this error probability is O(1/N∗T ) = O
(

1/X
2
3
p logX

)
and the

maximum error size in (9.23) will be denoted by

H∗
def
=
C0 log(N∗T )√

N∗
= Θ

(
logX

Xp/3

)
(∗ = L,R).

To cover the random walk events E∗,αXq by events about the coupled Brownian motions, we

only need to allow some extra room for this error of size H∗. Since the boundaries defining

events E∗,αXq rescale to (9.19) and (9.21), we define

ER,αj ,BM =

{
BR
t > −1

2
(t− θR)2 +

θ2
R

2
−HR ∀ 0 < t < T

}
(9.25)

EL,αj+1,BM =

{
BL
t <

1

2
(t+ θL)2 − θ2

L

2
+HL ∀ 0 < t < T

}
. (9.26)

Now, if the random walk remains close to the Brownian motion, and if the walk avoids its

own boundary during the time interval 0 ≤ n ≤ N∗T , then the Brownian motion must avoid

the looser-by-H∗ boundary during the time interval 0 ≤ t ≤ T . Formally,

E∗,αXq ∩ F c∗ ⊆ E∗,α,BM with both ∗ = L,R. (9.27)
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The probabilities of the events E∗,α,BM can both be written in terms of

D(κ,H, T )
def
= P

(
max

κT≤t≤(κ+1)T

(
Bt − 1

2 t
2
)
< H

∣∣∣ BκT = 1
2(κT )2

)
(9.28)

which will be evaluated later using Groeneboom’s paper [17]. For instance, on the RHS,

shifting and reflecting shows

P(ER,αj ,BM | X) = P
(

min
0<t<T

(
BR
t + 1

2(t− θR)2 − 1
2θ

2
R

)
> −HR

∣∣∣ BR
0 = 0, X

)

= P
(

max
−θR≤t≤−θR+T

(
BR
t − 1

2 t
2
)
< HR

∣∣∣ BR
−θ =

θ2
R

2
, X

)

= D(−κj , HR, T ).

Likewise on the LHS, P(EL,αj+1,BM | X) = D(ζκj+1, HL, T ).

Proof of (9.6). Continuing from (9.2), condition on keeping both sides of the walk close to

their Brownian motions (the event F cL ∩ F cR). Write

P(X is extreme | X)

≤ P
(⋃

α : |α−1|≤1/2

[
(F cR ∩ ER,αXq) ∩ (F cL ∩ EL,αXq)

] ∣∣ X
)

+ P(FL ∪ FR
∣∣ X) +O

(
e−cX

p)

≤ P
(⋃

α : |α−1|≤1/2ER,α,BM ∩ EL,α,BM
∣∣ X
)

+O

(
1

X
2
3
p

)
(Lemma 9.13 and (9.27))

≤ O
(

1

X
2
3
p

)
+
J−1∑

j=0

P
(
ER,αj ,BM

∣∣ X
)
P
(
EL,αj+1,BM

∣∣ X
)

(as in (1.5))

= O

(
1

X
2
3
p

)
+

J−1∑

j=0

D(−κj , HR, T )D(ζκj+1, HL, T ).
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9.4 Proof of Lemma 9.4

After the definition (9.28), we said the function D(κ,H, T ) would be evaluated using results

by Groeneboom [17], and now we say how to do this.8 From Groeneboom’s work [17, see

Corollary 2.1, equations (2.14), (2.15), and (2.24), and integrate the transition density as just

above equation (5.1), all using c = 1/2]—reusing much of the notation there for clarity—we

can write:

D(κ,H, T ) = e−T
3( 1

2
κ2+ 1

2
κ+ 1

6)−κTH
∫ ∞

0
e(κ+1)Tyr(T,H, y) dy, (9.29)

where

r(T,H, y) =
1

π

∫ ∞

−∞
eiλT giλ(min {H, y})hiλ(max {H, y}) dλ, (9.30)

and where the functions gz(t), hz(t) are defined using Airy functions and σ = 21/3 as

gz(t) =
π

σ
· Ai(σz) Bi(σz + σt)−Ai(σz + σt) Bi(σz)

Ai(σz)
, (9.31)

hz(t) = Ai(σz + σt). (9.32)

Note 9.14. Only in §9.4, λ refers to a real number in (9.30) and not the function (1.3).

The latter function is not needed here, so there should not be any confusion. We use λ to

agree as much as possible with the notation in [17]. Also, to be clear, at times below we

evaluate gz(h) at a numerical value h ≥ 0. This is not the function hz.

Once again, the goal of this section is to bound D(κ,H, T ) when |κ| ≤ 1/41/3. We

bound this by essentially replicating intricate calculations done by Groeneboom in [17,
8The quantity D(κ,H, T ) here, if rewritten in terms of κ, T , H, and the notation in the paper by

Groeneboom [17], would be the quantity Q(κT,0)

1/2

(
max

κT≤t≤(κ+1)T
Xt < H

)
.
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§5. Appendix] which will give asymptotic estimates for the integral in (9.29) with (9.30)

substituted for r. There are a few very minor changes here to asymptotics (our H → 0

takes the place of Groeneboom’s fixed value x, but that is all) and to some constant factors,

however the setup is almost exactly like Groeneboom’s, and as a result, his technique can

carry over to this scenario. Nevertheless, verifying certain portions of this remain quite

technical, so while a few calculations are merely sketched out below, a few will be worked

out again here in full. There are essentially three parts as we recycle the argument in [17,

§5. Appendix].

(a) Our part (a) corresponds to the argument near the bottom of p. 104 in [17] to eliminate

the y ≈ 0 region of the integral (9.29). In particular, Groeneboom notes there an

alternative expression for r (otherwise not needed here) gives the useful inequality

r(T,H, y) ≤ 1 if T is large. (9.33)

Set m = 3 and use (9.33) on the short interval y ∈ [0,mH] of (9.29) to find

D(κ,H, T )

≤ e−T 3( 1
2
κ2+ 1

2
κ+ 1

6)−κTH
[∫ mH

0
e(κ+1)Ty · 1 dy +

∫ ∞

mH
e(κ+1)Tyr(T,H, y) dy

]

≤ O
(
He−T

3/24
)

+ e−T
3( 1

2
κ2+ 1

2
κ+ 1

6)−κTH
∫ ∞

mH
e(κ+1)Tyr(T,H, y) dy. (9.34)

To explain the first exponent, note minκ
(

1
2κ

2 + 1
2κ+ 1

6

)
= 1

24 and TH → 0. For later,

we record the selection

m = 3, so that m > 1 and 1−m = −2. (9.35)

(b) Our part (b) corresponds to Groeneboom’s estimates on pp. 105–106 in [17]. We need

to establish bounds on giλ(h) and its derivative g′iλ(h) (with respect to h) that we can
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use in part (c). In particular, we will use that as λ→ ±∞ with 0 ≤ h ≤ 1/σ,

|giλ(h)| ∼ 1√
π|σλ|1/4 exp

[
h|λ|1/2 +O

(
h2

|λ|1/2
)
− 2

3
|λ|3/2

]
(9.36)

and
∣∣g′iλ(h)

∣∣ ∼ σ5/4|λ|1/4√
π

exp

[
h|λ|1/2 +O

(
h2

|λ|1/2
)
− 2

3
|λ|3/2

]
, (9.37)

hence

|giλ(h)| ≤ O
[
exp

(
h|λ|1/2 − 2

3
|λ|3/2

)]
(9.38)

and
∣∣g′iλ(h)

∣∣ ≤ O
[
|λ|1/4 exp

(
1

σ
|λ|1/2 − 2

3
|λ|3/2

)]
. (9.39)

We will skip the details of how to prove these, since the details are tedious and not

important later, and moreover since the calculation closely follows Groeneboom’s es-

timates in [17, pp. 105–106]:

• one first replaces each Bi in the numerator of (9.31) with Ai using identities given

in [17, eq. (5.5) and just below (5.11)], [1, eq. (10.4.9)];

• one next applies (the latter for g′iλ(h) only)

Ai(z) ∼ 1

2
√
πz1/4

exp

(
−2

3
z3/2

)
and Ai′(z) ∼ z1/4

2
√
π

exp

(
−2

3
z3/2

)
(9.40)

as |z| → ∞, |arg z| < π from [17, eq. (5.7)] or [25, eqs. (A.1)–(A.2)], from [1,

eqs. (10.4.59), (10.4.61)]; and finally

• one analyzes the real parts of the exponents z3/2 using a binomial expansion.

The only differences between establishing (9.36) and (9.37) are one first differentiates

the numerator of (9.31) with respect to h, and one uses the second estimate in (9.40).

(c) Our part (c) corresponds to the calculations and justification of Groeneboom’s equa-

tions (5.12) and (5.14) on pp. 106–108 in [17]. This part will check (see below)

∫ ∞

−∞

∫ ∞

mH

∣∣∣e(κ+1)Tygiλ(H)hiλ(y)
∣∣∣ dy dλ ≤ Õ

(
He(κ+1)3T 3/6

)
. (9.41)
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Notice that parts (a) and (c) together justify Lemma 9.4. The O term of (9.34) in (a) is

smaller than required, since −1/24 ≤ κ3/6 when |κ| ≤ 1/41/3. In the second integral term

of (9.34), substitute (9.30) then use part (c):

e−T
3( 1

2
κ2+ 1

2
κ+ 1

6)−κTH
∫ ∞

mH
e(κ+1)Tyr(T,H, y) dy

≤ e−T 3( 1
2
κ2+ 1

2
κ+ 1

6)−κTH · Õ
(
He(κ+1)3T 3/6

)

= Õ
(
Heκ

3T 3/6
)
.

(Again, TH → 0 in the exponent.) This gives the conclusion required for Lemma 9.4.

The remainder of this section provides more detail about part (c). Again, here we

closely follow Groeneboom’s arguments in [17, §5. Appendix, pp. 106–108], especially the

justification of Groeneboom’s equations (5.12) and (5.14). Groeneboom’s argument applies

Laplace’s method to estimate an integral like the one in part (c), up to a few minor changes.

(For background about Laplace’s method, see especially [9, §4.2–4.3], or [11].) Applying

these arguments involves rescaling the integration variables y, λ. In parallel to Groeneboom’s

substitutions, it will be convenient to introduce u, v defined by

y = (ρT )2u, λ = (ρT )2v, where ρ = κ+ 1, (9.42)

which differ only by constant multiples from those in [17, middle of p. 107]. Since |κ| ≤

1/41/3 ≈ 0.62996, it will be useful to keep in mind throughout that

1

3
< ρ = κ+ 1 <

5

3
(9.43)

is positive, bounded above, and bounded away from zero.

Before beginning, let us mention again the few minor changes between (9.41) and the

setup of integrals in Groeneboom’s paper [17, §5. Appendix]:
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• The asymptotics here are slighlty different. We consider giλ(H) with H → 0 as

X,T → ∞, whereas when Groeneboom considers giλ(x), his x is fixed. To side-step

this issue below, the rough idea is to write giλ(H) ≈ Hg′iλ(0), or more formally to use

the derivative bound in (b). This explains the factor H in (9.41) above.

• As already mentioned around (9.42), some of the constants here are slightly different.

Letting Groeneboom’s c = 1/2 and replacing his t with (κ + 1)T = ρT gives other

changes. These do not much matter within the argument.

Again, these changes are small enough that Groeneboom’s argument via Laplace’s method

still works, so we will use essentially the same technique here. There are a few minor tweaks

below, however. For one, Groeneboom splits into cases |v| < 2 and |v| > 2, which after

the change-of-constants would correspond to splitting around 1 here. Instead, we will split

around (7/6)2; this is somewhat arbitrary, but since 7/6 > 1, it helps slightly with the

exponents where |v| > (7/6)2.

To begin, notice exp
(
−2

3 Re
[
z3/2

])
does not vanish for any small z, so use (9.40) within

a O to bound (9.32), then subsitute for both u, v as in (9.42) to say

∫ ∞

−∞
|giλ(H)|

∫ ∞

mH
eρTy|hiλ(y)| dy dλ

≤
∫ ∞

−∞
|giλ(H)|

∫ ∞

mH
O

(
exp

[
ρTy − 2

3
Re
[
σ3/2 · (y + iλ)3/2

]])
dy dλ

= (ρT )4

∫ ∞

−∞
|giλ(H)|

∫ ∞

mH/(ρT )2
O

(
exp

[
(ρT )3

(
u− 2

√
2

3 Re
[
(u+ iv)3/2

])

︸ ︷︷ ︸
wv(u)

def
=

])
du dv.

Divide the v integral into two regions,

R1 =

{
0 ≤ |v| ≤

(
7

6

)2
}

and R2 =

{
|v| ≥

(
7

6

)2
}
,
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and focus first on R1. To begin Laplace’s method for the inner integral, we look at

wv(u) = u− 2
√

2

3
Re
[
(u+ iv)3/2

]
,

w′v(u) = 1−
√

2 Re
[
(u+ iv)1/2

]
,

w′′v(u) = −
√

2

2
Re

[
1

(u+ iv)1/2

]
.

To understand solutions u of w′v(u) = 0, Groeneboom checks desired properties using a

polar-coordinate representation [17, see p. 107 bottom to p. 108 top]. A slightly more

geometric approach is this: since the real part of (u+ iv)1/2 must be 1/
√

2, each u+ iv with

w′v(u) = 0 sits along the parabola

t 7→
(

1 + it√
2

)2

=
1− t2

2
+ it (t ∈ R), (9.44)

so w′v(u) = 0 tells us u = 1
2(1− v2) and (u+ iv)1/2 = 1√

2
(1 + iv); then

w′′v

(
1− v2

2

)
= −
√

2

2
Re

[ √
2

1 + iv

]
= − 1

1 + v2

and

wv

(
1− v2

2

)
=

1− v2

2
− 2
√

2

3
Re

[
1

23/2
(1 + iv)3

]
=

1

6
+

1

2
v2.

Notice 1
2(1− v2) is sometimes positive and sometimes negative when v ∈ R1, and so some-

times it is less than the lower integral bound, mH/(ρT )2; in any case we can bound

∫ ∞

mH/(ρT )2
e(ρT )3wv(u) du ≤

∫ ∞

min{0, 1
2

(1−v2)}
e(ρT )3wv(u) du

∗
≤ O

(√
1 + v2

(ρT )3
· e(Tρ)3( 1

6
+ 1

2
v2)

)
= O

(
(ρT )−3/2e(ρT )3( 1

6
+ 1

2
v2)
)

using Laplace’s method at
∗
≤ and then |v| ≤ O(1). (Again, see [9, §4.2].) We now use this in

the double integral with v ∈ R1. Simultaneously, write |giλ(H)| ≤ H ·max0≤h≤1/σ |g′iλ(h)|
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(since giλ(0) = 0) and use (9.39) to bound this maximum. Then

∫

R1

∫ ∞

mH/(ρT )2
eρTy|giλ(H)hiλ(y)| du dv

≤
∫

R1

O

(
H · |λ|1/4 exp

[
1

σ
|λ|1/2 −

(∗)︷ ︸︸ ︷
2

3
|λ|3/2

]
· (ρT )−3/2 exp

[
(ρT )3

(
1

6
+

1

2
v2

)])
dv

≤ O
(
H

∫

R1

|λ|1/4 exp

[
1

σ
|λ|1/2 − 1

12
|λ|3/2

]
· exp

[
(ρT )3

(
1

6
+

1

2
v2 − 7

12
|v|3/2

)]
dv

)
,

in the final line separating (∗) as 2
3 = 1

12 + 7
12 , keeping 1/12 in the first exponent and moving

7/12 into the second. Within the second exponent,

max
|v|≤(7/6)2

(
1

6
+

1

2
v2 − 7

12
|v|3/2

)
=

1

6
,

so we have

∫

v∈R1

∫ ∞

mH/(ρT )2
eρTy|giλ(H)hiλ(y)| dy dλ

≤ O
(
He(ρT )3/6 · (ρT )2

∫ ∞

−∞
|λ|1/4 exp

[
1

σ
|λ|1/2 − 1

12
|λ|3/2

]
dλ

)

= Õ
(
He(ρT )3/6

)
.

This is the desired scale over R1.

On R2, where |v| > (7/6)2, we use the boundary version of Laplace’s method (see [9,

§4.3]). From

wv(0) =
2

3
|v|3/2, w′v(0) = 1− |v|1/2, and w′′v(u) < 0 when u ≥ 0,

we have

wv(u) ≤ wv(0) + w′v(0)u =
2

3
|v|3/2 −

(
|v|1/2 − 1

)
u when u ≥ 0,
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so that with v ∈ R2 and |v|1/2 − 1 ≥ 1/6 > 0,

∫ ∞

mH/(ρT )2
e(ρT )3wv(u) du ≤ O

(
(ρT )−3 exp

[
2

3
|v|3/2(ρT )3 −mH · ρT

(
|v|1/2 − 1

)])
.

From this and (9.38),

∫

R2

∫ ∞

mH/(Tρ)2
eρT |giλ(H)hiλ(y)| dy dλ

≤ (ρT )4

∫

R2

O

[
exp

(
H|λ|1/2−2

3
|λ|3/2

︸ ︷︷ ︸
cancels with

)

· (ρT )−3 exp

(︷ ︸︸ ︷
2

3
|v|3/2(ρT )3−mH · ρT

(
|v|1/2 − 1

))]
dv

= ρT

∫

R2

O
[
exp

(
ρTH(1−m)|v|1/2

)]
dv

≤ O
(

1

ρTH2

)

since 1 −m = −2 by (9.35) and
∫∞
−∞ e

−C|v|1/2 dv = 4/C2. Finally, rewrite in terms of X.

Remember 0 < Ξ ≤ 1/3 and ρ > 0 from (9.43) to see

1

ρTH2
. X2/3 � e(ρ logX)3/6

X1/3
. He(ρT )3/6,

so the final double integral over R2 was also Õ
(
He(ρT )3/6

)
.

9.5 Constructing κj, Proof of Lemma 9.6

Values κ0, κJ were defined in (9.4). We are interested in the intermediate terms, κ1, . . . , κJ−1.

Build the sequence inductively so that (9.8) holds with equality. That is, define

κ1 = −1

2
and κj =

1

ζ

(
κj−1 +

1

T 3

)
when j > 1, (9.45)

stopping at an index where 1/3 < κJ−1 ≤ 1/2. That this happens is checked below.

Recalling ζ def
= 1− T−4 ↗ 1, parts (b) and (d) of the lemma are automatic.
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We now prove (a), that the sequence is increasing. From (9.45), notice

κj − κj−1 =
1

ζ

(
κj−1(1− ζ) +

1

T 3

)
.

• If κj−1 ≥ 0, this is clearly positive, since 1− ζ = 1/T 4 > 0.

• Alternatively, if κj−1 < 0, induct backwards to say κj−1 ≥ κ1 = −1/2 > −1. Then

κj − κj−1 > 0 once T > 1, since then

κj−1(1− ζ) +
1

T 3
> ζ − 1 +

1

T 3
= − 1

T 4
+

1

T 3
> 0.

This proves (a), except perhaps at j = 0, J , which can be checked separately.

Now we prove (c) and (e) together, that eventually 1/3 < κJ−1 ≤ 1/2 after J ≤ O(T 4)

terms. The closed form of (9.45) is

κj =
−1

2ζj−1
+

1

T 3
· 1/ζ − 1/ζj

1− 1/ζ
(j ≥ 1), (9.46)

so κj > 1/3 if

1

T 3
· 1/ζ − 1/ζj

1− 1/ζ
>

1

3
+

1

2ζj−1
.

Substituting ζ = 1 − 1/T 4, choosing j = T 4, and then letting T → ∞, the LHS of this

equation diverges to +∞, whereas the RHS clearly converges to 1/3 + 1/2. This shows we

can find an index J − 1 ≤ O(T 4) where κJ−1 > 1/3. If J − 1 is the first such index, then

by (9.45),

κJ−1 ≤
1

ζ

(
1

3
+

1

T 3

)
≤ 1

2

if T is large. This completes the construction.

9.6 Proof of Proposition 9.2(a)

Most of the work and all of the ideas needed for 1/ log x carry over from 1/xq. Really, the

only changes are in the rescaling steps, so we only present a skeleton outline of these. In
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this case, we use slopes parameterized by α on the order

β = α/f(X) = α logX.

Given any such β, Remark 6.3 requires that nX be asymptotically much smaller than both

λ(X) ∼ X/ logX (as in (3.3)) and X/β = X/α logX, so if we select nX = εX/ logX, we

need

ε < min {1, 1/α}. (9.47)

To discard α 6≈ 1, we need bounds that play the roles of (9.11) and (9.12). These are: on

the RHS, when n > 0,

λ(X + nβ)− λ(X)− n ≥ (α− 1)n− α2n2

2X
, (9.48)

and on the LHS, when 0 ≤ n ≤ εX/ logX,

λ(X)− λ(X − nβ)− n ≤ (α− 1)n+
α2n2

2X
· γε,α with γε,α =

1

1− 2εα
. (9.49)

These will be checked below, but both are similar to triangle estimates used before. Pro-

ceeding as in Lemma 9.3 establishes constants c, ν > 0 so that

P(X is extreme | X) ≤ P
(⋃

α : |α−1|≤1/2EL,β ∩ ER,β
∣∣ X
)

+O
(
e−c(X/ logX)ν

)
.

Now with |α− 1| ≤ 1/2, define

γε = γε,3/2 =
1

1− 3ε

so that γε,α < γε. Complete squares in (9.48) and (9.49) (using γε,α < γε in the latter), and

let n = N∗t in each case: we find that

1√
NR

(λ(X + nβ)− λ(X)− n)

≥ −1

2
(t− θR)2 +

θ2
R

2
with NR =

(
X

α2

)2/3

and θR =
(α− 1)X1/3

α2/3
,

(9.50)
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and when 0 ≤ n = NLt ≤ εX
logX = nX ,

1√
NL

(λ(X)− λ(X − nβ)− n)

≤ 1

2
(t+ θL)2 − θ2

L

2
with NL =

(
X

α2γε

)2/3

and θL =
(α− 1)X1/3

α2/3γ
1/3
ε

.

(9.51)

The reparameterization here in place of (9.5) is

κj =

(
αj − 1

α
2/3
j

)
· X

1/3

logX
,

the only differences being the exponent 1/3 instead of p/3 and no factor of q. We now define

ζ → 1 and ε→ 0 depending on X in such a way that

ζ
def
=

1

γ
1/3
ε

= (1− 3ε)1/3 def
= 1− 1

log4X
, which means ε ∼ 1

log4X
. (9.52)

Then as before

θL = ζκj+1T, θR = κjT, T = logX,

and the rest of the proof is more or less the same as the 1/xq case: define events E∗,α,BM

as in (9.25)–(9.26)—but now using new values of θ∗ and H∗, the allowed error size in

Lemma 9.13—then argue about how to bound (9.6) using (9.7).

To wrap up, we check (9.48)–(9.49) using the triangles in Figure 9.3.

Proof of (9.48). Since β = α logX,

λ(X + nβ)− λ(X)− n = (α− 1)n−
∫ X+nβ

X

1

logX
− 1

log t
dt,

but we have an upper bound from the green triangle:

∫ X+nβ

X

1

logX
− 1

log t
dt ≤ 1

2
(nβ) ·

(
nβ · 1

X log2X

)
=
α2n2

2X
.
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X − nβ X X + nβX − nXβ

1

logX

1

log(X − nXβ)
1/ log t

Figure 9.3: More triangular area approximations. The blue triangle is scaled down from the

red one, which has two points on the curve 1/ log t. The green triangle’s lower boundary is

the tangent line to 1/ log t at t = X.

Proof of (9.49). We have

λ(X)− λ(X − nβ)− n = (α− 1)n+

∫ X

X−nβ

1

log t
− 1

logX
dt.

From the blue area,

∫ X

X−nβ

1

log t
− 1

logX
dt ≤ 1

2
(nβ) ·

(
nβ

nXβ

)
·
(

1

log(X − nXβ)
− 1

logX

)

=
1

2
(nα)2 · log2X

εαX
·




log
(

1
1−εα

)

logX log(X − εαX)




=
1

2
(nα)2 · 1

εαX
·




log
(

1
1−εα

)

1 + log(1−εα)
logX




Now Taylor expand to see − log(1− εα) < εα+ (εα)2 + (εα)3 + · · · = εα
1−εα . Use this in the

numerator. In the denominator use
1

1 + log(1−εα)
logX

<
1

1− εα
(1−εα) logX

<
1

1− εα
1−εα

=
1− εα
1− 2εα

,

then cancel the 1− εα.
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Chapter 10

Conjectures Built from Similar

Results of Piet Groeneboom

Here we merely rescale the intensity f(x) in a way Robin Pemantle suggested (described

in §10.1) to compare a squished Poisson process to points from a density g(x) on [0, 1].

There are technical differences, but the rescaling leads one to each of the guesses §1.3.6(a)

and §1.3.6(b). After the rescaling, we see how for the example 1/ log x in §10.2.

10.1 Rescaling

This section describes for any intensity f(x) the rescaling that Robin Pemantle suggested.

We first need some notation. For a given intensity f(x), define

Λs
def
= λ−1(s).

Notice Λn may be regarded as the typical position for the nth point Xn (see Lemma 2.1

with Sn ≈ n). Temporarily fix a length ` > 0. From an intensity f(x) = f1(x), consider the

109



squished and scaled intensity

f`(x) = `f1(`x). (10.1)

The expected number of points with this squished intensity is λ`(t) =
∫ t

0 f`(x) dx = λ1(`t),

which satisfies

λ−1
` (s)

∗
=

1

`
λ−1

1 (s).

Notice ∗
= tells us that if we couple Poisson processes X(1)

n and X
(`)
n for f1 and f` via

Lemma 2.1, then

X(`)
n

def
= λ−1

` (Sn)
∗
=

1

`
λ−1

1 (Sn)
def
=

1

`
X(1)
n ;

in particular, points from intensity f`(x) are a linear
1

`
-scaling of points from f1(x).

As mentioned above, Robin Pemantle’s suggestion is to rescale so ≈ n points are within

[0, 1], meaning we set ` = Λn and renormalize to define the density

gn(x)
def
=

Λnf(Λnx)∫ 1
0 Λnf(Λny) dy

=
Λnf(Λnx)

n
on 0 < x < 1. (10.2)

As Remark 1.10 noted, there is a chance this rescaling could resemble one in forthcoming

work mentioned in [19, Lemma 3.1].

10.2 Explanation of the conjecture §1.3.6(b) about 1/ log x

We focus on the guess §1.3.6(b) here, but first, let us say that in the case of 1/xq, where

the rescaling (10.2) makes gn(x) = g(x) = p1[0 < x < 1]/xq independent of n, a similar

calculation to the one below leads to the guess §1.3.6(a). Now consider 1/ log x.

We begin with some comments about the rescaling (10.2), defined here for each n by

gn(x) =
Λn 1[e/Λn < x < 1]

n · log(Λnx)
which has g′n(x) = −Λn 1[e/Λn < x < 1]

n · x · log2(Λnx)
. (10.3)
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In this case Λn ∼ n log n from (3.3). Unlike with 1/xq, these densities change with n.

Related observations were given in §1.3.6 and Remark 1.19, where we promised to verify the

following: if 0 < x < 1 is fixed as n→∞, then (10.3) gives

gn(x) ∼ n log n

n(log n+ log log n+ log x)
∼ 1

and g′n(x) ∼ − n log n

nx
(
log n+ log log n+ log x

)2 ∼ 0,

(10.4)

whereas if x ∼ e/Λn → 0 as n→∞ then gn(x) ∼ log n.

That gn changes with n means we cannot genuinely apply (1.7/P.G.1) or (1.8/P.G.2),

because Groeneboom’s context in [19, §3] considered a single fixed density, g. Nonetheless,

the idea here is to compute ENn with the formula (1.7/P.G.1) and guess that is the answer.

In particular, conjecture that

EE1/ log x(Λn) ≈ E
[
NN(Λn)

]

≈ k1n
1/3

∫ 1

e/Λn

(
g′n(x)2

4gn(x)

)1/3

dx (as in (1.7/P.G.1) above)

= k1n
1/3

(
Λn
4n

)1/3 ∫ 1

e/Λn

1

x2/3 log(Λnx)
dx (using definition (10.3) above)

=
k1

41/3

∫ Λn

e

1

u2/3 log u
du (setting u = Λnx).

In a moment, we will calculate:

Claim 10.1. As n→∞,
∫ Λn

e

1

u2/3 log u
du ∼ 3n1/3

(log n)2/3
.

First, to complete the calculation above, let t = Λn and n ∼ t

log t
, so that we guess

EE1/ log x(t) ≈ k1

41/3
· 3n1/3

(log n)2/3
∼ k1 ·

3

41/3
· t

1/3

log t
.

This should explain the mean and variance in §1.3.6(b). Again, the normality conjecture is

simply based on Groeneboom’s result (1.8/P.G.2) from [19, Theorem 3.1].

111



Proof of Claim 10.1. We use the methods of [36, Ch 3.4]. An immediate lower bound is

∫ Λn

e

1

u2/3 log u
du >

∫ Λn

e

1

u2/3 log Λn
du =

3
(

Λ
1/3
n − e1/3

)

log Λn
∼ 3n1/3

(log n)2/3
.

For the other direction, split the integral around an interior bound b ∈ (e,Λn):

∫ Λn

e

1

u2/3 log u
du <

∫ b

e

1

u2/3
du+

∫ Λn

b

1

u2/3 log b
du

= 3

(
b1/3 − e1/3 +

Λ
1/3
n − b1/3

log b

)
. (10.5)

Set b =
n

(log n)3
. Then since log b ∼ log n and Λn ∼ n log n,

b1/3 =
n1/3

log n
� n1/3

(log n)2/3
∼ Λ

1/3
n

log n
∼ Λ

1/3
n

log b
.

Using this last observation in (10.5) gives

∫ Λn

e

1

u2/3 log u
du . 3

(
Λ

1/3
n

log b

)
∼ 3n1/3

(log n)2/3
.
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Appendix A

Computation and Figures

Although §5 outlines a strategy to guarantee extreme points are correct, most pictures were

not generated this way. Most were generated more simply and so could be inaccurate (in the

sense of §5) though accurate enough for our intuition. Figure 5.2 was, however, generated

using the strategy in §5.

The computations related to H in §5.3, the simulations related to gr in §1.4 and the

simulations for the constant µ in §7.3 used Python (https://www.python.org/). The figures

were made with Python, matplotlib (v. 3.4.2, see https://matplotlib.org/ and [23]), and

TikZ.
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