Maths 240 homework for 2 August Due: 7 August

4.1 Find the area of region bounded by the loop in the curve \(y^2 = x^3 + x^2 \). [Hint: The curve can be parameterized by \(x = t^2 - 1, y = t^3 - t \)].

4.2 (Final exam, Fall 2011) Find the value of the line integral

\[
I = \int_C (3\pi x^2 y + ye^x)dx + (\pi x + \pi x^3 + e^x)dy,
\]

where \(C \) is the curve parametrized by \(x = \sin t, y = t \) for \(0 \leq t \leq \pi \), and oriented in the direction of increasing \(t \).

4.3 Section 9.15, ex 24.

4.4 Find the volume of the region in the first octant bounded by \(z = 1 - y^2 \), \(x + y = 2 \), and the coordinate planes.

4.5 Evaluate \(\iiint_D x^2 + y^2 + z^2 \, dV \), where \(V \) is the region within the sphere \(x^2 + y^2 + z^2 = 4 \) and above the cone \(z = \sqrt{x^2 + y^2} \).

4.6 (Final exam, Fall 2010) Find the outward flux

\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, dS
\]

of the vector field

\[
\mathbf{F} = 4xy^2 \mathbf{i} + 3yj + 4zx^2 \mathbf{k}
\]

where the surface \(S \) is the boundary of the region \(1 \leq x^2 + y^2 \leq 4, 0 \leq z \leq 1 \).

4.7 Find \(\iiint_D (x - z^2) e^x \, dV \), where \(D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1 \} \) is the unit ball. [Hint: Consider the vector field \(\mathbf{F}(x, y, z) = (-z^2e^x, 0, xze^x) \)].

4.8 (Final exam, Fall 2011) Consider the vector field

\[
\mathbf{W} = x^3y^2 \mathbf{i} - x^2y^3 \mathbf{j} + (1 + z) \mathbf{k}
\]

Find the outward flux of \(\mathbf{W} \) through the portion \(S \) of the paraboloid \(z = 4 - x^2 - y^2 \) which lies above the \(xy \)-plane.