An Extremely Short Proof of the Hairy Ball
Theorem

Peter McGrath

Abstract. Using winding numbers, we give an extremely short proof that every continuous
field of tangent vectors on \(S^2 \) must vanish somewhere.

Consider the unit two sphere \(S^2 = \{ p \in \mathbb{R}^3 : |p| = 1 \} \) in \(\mathbb{R}^3 \). We say a function \(v : S^2 \to \mathbb{R}^3 \) is a vector field on \(S^2 \) if \(\langle v(p), p \rangle = 0 \) for each \(p \in S^2 \) and call a vector field continuous if its component functions are continuous.

Theorem 1. Suppose \(v \) is a continuous vector field on \(S^2 \). Then there is \(p \in S^2 \) such that \(v(p) = 0 \).

This classical theorem was originally proven by Poincaré and is sometimes called the “Hairy Ball theorem.” Theorem 1 has many interesting proofs (see, for instance, [2] and the charming book [1]) and various generalizations; for more information, see the introduction of [2]. The distinguishing attribute of the present proof is its brevity and elegance: Each of the aforementioned proofs requires computations in and between a set of stereographic coordinate charts that appropriately cover \(S^2 \). The argument here is shorter and simpler.

A regular smooth curve in the plane is a smooth map \(S^1 \to \mathbb{R}^2 \) whose derivative does not vanish anywhere. The rotation number of such a curve \(\gamma \) is \(\frac{1}{2\pi} \) times the change that the oriented angle \(\dot{\gamma} \) makes with some fixed reference direction (e.g., \(e_1 = (1, 0) \)) as the curve is traversed; in other words, it is the winding number of \(\dot{\gamma} \), thought of as a map \(S^1 \to \mathbb{R}^2 \setminus \{0\} \). The rotation number is an integer that is an invariant under regular homotopy (homotopy through regular curves).

Proof. Suppose for the sake of a contradiction that \(S^2 \) admits a continuous nonvanishing vector field \(v \); we may suppose \(v \) has unit length by replacing \(v \) with \(\frac{v}{|v|} \). We first note that the definition of rotation number can be extended to curves in \(S^2 \) by replacing the fixed direction \(e_1 \) by the variable direction \(v \) in the definition above.

To see this, endow \(\mathbb{R}^3 \) with a right-handed orientation so the ordered 3-tuple of standard basis vectors \(\{e_1, e_2, e_3\} \) is positively oriented and identify \(\mathbb{R}^2 \) with the subset \(\{(x, y, z) \in \mathbb{R}^3 : z = 0\} \subset \mathbb{R}^3 \). Given \(p \in S^2 \) and a unit vector \(w \in T_pS^2 \), there is a unique unit vector \(w^+ \in T_pS^2 \) such that \(\{p, w, w^+\} \) is positively oriented. For such \(p \) and \(w \), denote by \(\Phi_{p,w} \) the isometry of \(\mathbb{R}^3 \) determined by requesting that \(\Phi_{p,w} \) map the point \(p \) to \(0 \) and send the ordered 3-tuple of tangent vectors \(\{w, w^+, p\} \subset T_p\mathbb{R}^3 \) to \(\{e_1, e_2, e_3\} \subset T_0\mathbb{R}^3 \). Clearly, \(\Phi_{p,w} \) depends continuously on \(p \) and \(w \). We define the rotation number of a curve \(\gamma \) in \(S^2 \) with respect to \(v \) to be the winding number of the continuous curve \(\Phi_{v(\gamma)}(\dot{\gamma}) \).

Consider now the family of regular smooth curves in \(S^2 \) defined as follows: \(C_{p,s} \) (for \(p \in S^2, s \in (-1, 1) \)) is the circle that is the intersection of \(S^2 \) and the plane \(\{q \in S^2 : \)}
\(\langle q, p \rangle = s \rangle \), oriented so that \(p \) is the positive normal. These curves are all regularly homotopic and so have the same rotation number with respect to \(v \), say \(n \).

Now notice that for \(s = 0 \), \(C_{p,s} \) and \(C_{-p,s} \) parametrize the same great circle but with opposite orientations. Thus, \(n = -n \) and hence \(n = 0 \). On the other hand, for \(s \) close to \(1 \), the rotation number of \(C_{p,s} \) is close to the rotation number of a circle in the plane because \(v \) is close to \(v(p) \) on \(C_{p,s} \) by continuity. Thus, \(n \in \{-1, 1\} \). This is a contradiction.

REFERENCES

Department of Mathematics, Brown University, Providence RI 02912

Peter_Mcgrath@brown.edu