Math 312 Homework 2

Due Thursday, July 5, 2018

Problem 1. Write the following system of equations as a matrix equation, \(Ax = b \).

\[
\begin{align*}
3x + y - z &= 5 \\
6x - y + z &= 12 \\
3x + 7y + 2z &= -26
\end{align*}
\]

Reduce it to a triangular system, \(Ux = c \), and then solve for \(x \) using back-substitution.

Problem 2 (Strang 2.3.17). The parabola \(y = a + bx + cx^2 \) goes through the points \((x, y) = (1, 4)\) and \((2, 8)\) and \((3, 14)\). Find and solve a matrix equation for the unknowns \((a, b, c)\).

Problem 3 (Strang 2.4.1). \(A \) is 3 by 5, \(B \) is 5 by 3, \(C \) is 5 by 1, and \(D \) is 3 by 1. All entries are 1. Which of these matrix operations are allowed, and what are the results?

1. \(BA \)
2. \(AB \)
3. \(ABD \)
4. \(DC \)
5. \(A(B + C) \)

Problem 4 (From Strang 2.5.10 and 2.5.25 and 2.5.31). Find the inverses of the following matrices:

1. \[
\begin{bmatrix}
0 & 0 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & 4 & 0 & 0 \\
5 & 0 & 0 & 0
\end{bmatrix}
\]

2. \[
\begin{bmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{bmatrix}
\]

3. \[
\begin{bmatrix}
1 & -1 & 1 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Problem 5 (Strang 2.6.7). What three elimination matrices \(E_{21}, E_{31}, E_{32} \) put \(A \) into its upper triangular form \(E_{32}E_{31}E_{21}A = U \)? Multiply by \(E_{32}^{-1}, E_{31}^{-1} \), and \(E_{21}^{-1} \) to factor \(A \) into \(L \) times \(U \):

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5
\end{bmatrix} \
L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}
\]

Problem 6 (Strang 2.7.22). Find the \(PA = LU \) factorizations for

\[
A = \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
2 & 3 & 4
\end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]