ON A CONJECTURE OF COLLIOT-THÉLÈNE

FLORIAN POP

Abstract. The aim of this short note is to extend results by Denef and Loughran, Skorobogatov, Smeets concerning refinements of a conjecture of Colliot-Thélène. The problem is about giving necessary and sufficient conditions for morphisms of varieties to be surjective on local points for almost all localizations.

1. Introduction/Motivation

The aim of this note is to shed new light on a conjecture by Colliot-Thélène, cf. [CT], concerning the image of local rational points under dominant morphisms of varieties over global fields. The precise context is as follows:

- Let k be a global field, $\mathbb{P}(k)$ be the places of k, and k_v be the completion of k at $v \in \mathbb{P}(k)$.
- Let $f : X \to Y$ be a morphism of k-varieties.

For every $v \in \mathbb{P}(k)$, the k-morphism f gives rise to a canonical map $f^k_v : X(k_v) \to Y(k_v)$. There are obvious examples showing that, in general, f^k_v is not surjective, e.g. $f : \mathbb{P}_{\mathbb{Q}} \to \mathbb{P}_{\mathbb{Q}}$ of degree two. Therefore, for $f : X \to Y$ as above, it is natural to consider the basic property:

$$(Srj) \quad f^k_v : X(k_v) \to Y(k_v) \text{ is surjective for almost all } v \in \mathbb{P}(k).$$

and to ask the following fundamental:

Question: Give necessary and sufficient conditions for $f : X \to Y$ to have property (Srj).

This problem was considered in a systematic way by Colliot-Thélène [CT], under the following restrictive but to some extent natural hypothesis:

$$(*) \quad k \text{ is a number field, } X \text{ and } Y \text{ are projective smooth integral } k\text{-varieties, and } f : X \to Y \text{ is a dominant morphism with geometrically integral generic fiber.}$$

In particular, if $L := k(Y)$ is the function field of Y, the generic fiber X_L of f can be viewed as an L-variety. In this notation, for morphisms $f : X \to Y$ satisfying $(*)$, Colliot-Thélène considered the hypothesis (CT) and made the conjecture (CCT) below:

$$(CT) \quad \text{For each discrete valuation } k\text{-ring } R \subset L, \text{ and its residue field } \kappa_R, \text{ there is a regular flat } R\text{-model } \mathcal{X}_R \text{ of } X_L \text{ whose special fiber } \mathcal{X}_{\kappa_R} \text{ has an irreducible component } \mathcal{X}_\alpha \text{ which is } \kappa_R\text{-geometrically integral.}$$

Date: Variant of Dec 12, 2019.

Key words and phrases. Rational points of varieties, localizations of global fields, function fields, valuations and prime divisors, Galois theory, Ax–Kochen–Ershov Principle, ultraproducts, pseudo finite fields.

NOT funded by the NSF: The ANT research directors (Douglas, Hodges, Libgober and Pollington), in their higher understanding of this matter, overruled the expert reviewers and panelists recommendation and decided not to fund this research.
Conjecture of Colliot-Thélène (CCT). Let \(f : X \to Y \) be a dominant morphism of proper smooth geometrically integral varieties over a number field \(k \), and suppose that hypotheses (*) and (CT) are satisfied. Then \(f : X \to Y \) has the property (Srj).

In a recent paper, Denef [Df2] proved a stronger form of the conjecture (CCT), by replacing the hypothesis (CT) by the weaker hypothesis (D) below. In order to explain Denef’s result, recall the following terminology: Let \(f : X \to Y \) be a morphism satisfying hypothesis (*). A (smooth) modification of \(f \) is any morphism \(f' : X' \to Y' \) satisfying hypothesis (*) such that there exist modifications (i.e., birational morphisms) \(p : X' \to X \), \(q : Y' \to Y \) satisfying \(q \circ f' = f \circ p \). Given a smooth modification \(f' : X' \to Y' \) of \(f \), for every Weil prime divisor \(E' \subset Y' \), and the Weil prime divisors \(D' \) of \(X' \) above \(E' \), consider: First, the multiplicity \(e(D'|E') \) of \(D' \) in \(f'^*(E') \in \text{Div}(X') \); second, the restriction \(f'^*_D : D' \to E' \) of \(f' \) to \(D' \subset X' \), which is a morphism of integral \(k \)-varieties. Finally, for \(f : X \to Y \) satisfying (*), it turns out that the hypothesis (CT) above implies that following obviously weaker hypothesis:

\[
\text{(D)} \quad \text{For every modification } f' \text{ and every Weil prime divisor } E' \subset Y', \text{ there is } D' \text{ above } E' \text{ with } e(D'|E) = 1 \text{ and } f'^*_D : D' \to E' \text{ having geometrically integral generic fiber.}
\]

Theorem (Denef [Df2], Main Theorem 1.2).

Let \(f : X \to Y \) satisfy the hypotheses (*) and (D). Then \(f \) has the property (Srj).

Finally recall the very recent results by Loughran–Skorobogatov–Smeets [LSS] which, for morphisms \(f : X \to Y \) satisfying the hypothesis (*) above, give necessary and sufficient conditions such that \(f : X \to Y \) has property (Srj). Namely, following [LSS], in the notation introduced above, let \(f' : X' \to Y' \) be a smooth modification of \(f : X \to Y \). For a Weil prime divisor \(E' \) of \(Y' \) and a Weil prime divisor \(D' \) of \(X' \) above \(E' \), let \(k(D')|k(E') \) be the function field extension defined by the dominant map \(f'^*_D : D' \to E' \). One says that \(E' \) is pseudo-split under \(f' : X' \to Y' \), if for every element of the absolute Galois group \(\sigma \in G_{k(E')} \), there is some Weil prime divisor \(D' \) of \(X' \) above \(E' \) satisfying:

\[
e(D'|E') = 1 \quad \text{and} \quad k(D') \otimes_{k(E')} k(E') \text{ has a factor stabilized by } \sigma.
\]

Following Loughran–Skorobogatov–Smeets [LSS], consider the hypothesis:

\[
\text{(LSS)} \quad \text{For all smooth modifications } f' \text{ of } f, \text{ all Weil prime divisors } E' \subset Y' \text{ are pseudo-split.}
\]

Note that if \(D', E' \) satisfy hypothesis (D), then \(k(D')|k(E') \) is a regular field extension, hence \(k(D') \otimes_{k(E')} k(E') \) is a field stabilized by all \(\sigma \in G_{k(E')} \) (and \(E' \) is called split). Hence hypothesis (D) implies (LSS), leading to the following sharpening of Denef’s result above:

Theorem (Loughran–Skorobogatov–Smeets [LSS], Theorem 1.4).

Let \(f : X \to Y \) satisfy (*). Then \(f \) satisfies hypothesis (LSS) iff \(f \) has property (Srj).

The aim of this note is to provide a different approach to the basic problem and (CCT) considered above, which among other things allows the following:

- There are no smoothness/properness/irreducibility hypotheses on the \(k \)-varieties \(X, Y \).
- Hypotheses (D), (LSS) can be replaced by the weaker hypotheses (*), (**)_-split below.
- \(k \) can be more general, e.g. a finitely generated field of characteristic zero, or finitely generated over a PAC field of characteristic zero.
- Finally, in positive characteristic \(p > 0 \), we give sufficient condition for (Srj) to hold, e.g. in the case \(k \) is finitely generated, or finitely generated over a PAC field.

2
In order to proceed, let us introduce/consider notation as follows: Let $N \mid k$ be a function field over an arbitrary base field k. For a valuation v of N, let $\mathcal{O}_v, \mathfrak{m}_v$ be its valuation ring/ideal, vN denote the valuation group, and Nv be the residue field of v. A valuation v of N is called a k-valuation if v is trivial on k, or equivalently, $k \subset \mathcal{O}_v$. The space of k-valuations $\text{Val}_k(N)$ of $N\mid k$, called the Riemann–Zariski space of $N\mid k$, carries naturally the Zariski topology via the following geometric interpretation:

Let $(Z_{\alpha})_{\alpha}$ be any cofinal family of proper k-models of Z_{α} w.r.t. the domination relation. For $v \in \text{Val}_k(N)$, let $z_{\alpha,v} \in Z_{\alpha}$ be the center of v on Z_{α}. Then one has:

$$\text{Val}_k(N) = \lim_{\alpha} Z_{\alpha}, \quad v = (z_{\alpha,v})_{\alpha}, \quad \mathcal{O}_v = \lim_{\alpha} \mathcal{O}_{z_{\alpha,v}}, \quad \mathfrak{m}_v = \lim_{\alpha} \mathfrak{m}_{z_{\alpha,v}}.$$

A k-valuation $v \in \text{Val}_k(N)$ is called a prime divisor of $N \mid k$ if there is a normal model Z of $N \mid k$ and a Weil prime divisor D of Z with $\mathcal{O}_v = \mathcal{O}_{\eta_D}$, the local ring of the generic point $\eta_D \in Z$ of D. In particular, $vN = \mathbb{Z}$, and $Nv = k(D)$ is the function field of the k-variety D, thus satisfying $\text{td}(Nv\mid k) = \text{td}(N\mid k) - 1$. For $v \in \text{Val}_k(N)$ the following are equivalent:

i) v is a prime divisor of $N\mid k$.

ii) In the above notation, the center $z_{\alpha,v}$ of v on some Z_{α} has $\text{codim}_{Z_{\alpha}}(z_{\alpha,v}) = 1$.

iii) $\text{td}(Nv\mid k) = \text{td}(N\mid k) - 1$.

Let $\mathcal{D}(N\mid k)$ denote the set of prime divisors of $N\mid k$ together with the trivial valuation.

For extensions of function fields $M \mid N$ over k, the restriction $\text{Val}_k(M) \rightarrow \text{Val}_k(N), v \mapsto v\mid N$ is surjective, and defines a surjective map $\mathcal{D}(M\mid k) \rightarrow \mathcal{D}(N\mid k)$. In particular, if $v \in \mathcal{D}(M\mid k)$ and $w = v\mid N$, then $e(v\mid w) := (vM : wN)$ is finite if either v is trivial or w is non-trivial, and there is a canonical k-embedding of the residue function fields $Lw := \kappa(w) \hookrightarrow \kappa(v) =: \bar{K}v$.

We say that $w \in \mathcal{D}(L\mid k)$ is pseudo-split in $\mathcal{D}(M\mid k)$, if for every $\sigma \in G_{Lw}$, there is some $v \in \mathcal{D}(M\mid k)$ satisfying: $w = v\mid N$, $e(v\mid w) = 1$ if w is non-trivial, and $Mv \otimes_{Lw} \bar{L}w$ has a factor which is a field stabilized by σ. And we say that $\mathcal{D}(L\mid k)$ is pseudo-split in $\mathcal{D}(M\mid k)$, if all $w \in \mathcal{D}(L\mid k)$ are pseudo-split in $\mathcal{D}(M\mid k)$.

The above notion of pseudo-splitness relates to the one from [LSS] mentioned above as follows: Let $f : X \rightarrow Y$ be a dominant morphism of projective smooth varieties over a number field k, and setting $K = k(X), L = k(Y)$, let $K \mid L$ be the corresponding extension of function fields. Let $f_{\alpha} : X_{\alpha} \rightarrow Y_{\alpha}, \alpha \in I$ be the (projective) system of all the smooth modifications of f satisfying the hypothesis (\ast). By Hironaka’s Desingularization Theorem, $(X_{\alpha})_{\alpha}$ and $(Y_{\alpha})_{\alpha}$ are cofinal (w.r.t. the domination relation) in the system of all the proper models of $K\mid k$, respectively $L\mid k$. Hence by mere definitions one has:

Fact. The hypothesis (LSS) implies that $\mathcal{D}(L\mid k)$ is pseudo-split in $\mathcal{D}(K\mid k)$.

Finally, let Z be an integral k-variety, and $N = k(Z)$ be its function field. A point $z \in Z$ is called valuation-regular-like (v.r.l.), if there exist $\bar{v} \in \text{Val}_k(N)$ and $v \in \mathcal{D}(N\mid k)$ both having center $z \in Z$ such that $\bar{v}Z = \kappa(z), Nv\mid \kappa(z)$ is a regular field extension, and $v(u) = 1$ for all $u \in \mathfrak{m}_z \setminus \mathfrak{m}_z^2$. Notice that regular points $z \in Z$ are v.r.l. Indeed, if (t_1, \ldots, t_d) is a system of regular parameters of \mathcal{O}_z, the canonical k-embedding $K \hookrightarrow \kappa(z)((t_1)) \cdots ((t_d))$ defines a valuation $\bar{v} \in \text{Val}_k(K)$ with $K\bar{v} = \kappa(z)$. Further, the so called degree valuation v defined by (\mathfrak{m}_z^1) has as residue field the rational function field $Kv = \kappa(z)(t_1/t_d)_{i < d}$ and satisfies $v(u) = 1$ for all $u \in \mathfrak{m}_z \setminus \mathfrak{m}_z^2$. We say that Z is valuation-regular-like, if all $z \in Z$ are v.r.l. points. Note
that regular k-varieties are valuation-regular-like, but the converse does not hold: Indeed, rational double points and rational cusps of curves are v.r.l. points, but not regular points.

This being said, a first result extending/generalizing and shedding new light on the afore mentioned [Df2], Main Theorem 1.2, and [LSS], Theorem 1.4, is as follows:

Theorem 1.1. Let k be a number field, $f : X \to Y$ be a dominant morphism of proper valuation-regular-like k-varieties, and $K = k(X)$, $L = k(Y)$. Then f has property (Srj) iff $D(L|k)$ is pseudo-split in $D(K|k)$. In particular, the property (Srj) for dominant morphisms of proper valuation-regular-like k-varieties is birational.

Theorem 1.1 is proved in section 4, as a consequence of Theorem 4.1, and the more general Theorem 1.2 below, which considers the property (Srj) for morphisms of general varieties over number fields. In order to announce the latter result, we introduce notation and terminology as follows: Let $f : X \to Y$ be a morphism of arbitrary varieties over an arbitrary base field k, and let X_y be the reduced fiber of f at $y \in Y$. For $y \in Y$ and $x \in X_y$, we denote $L_y := \kappa(y)$, $K_x := \kappa(x)$, hence f defines canonically a k-embedding of function fields $K_x \subset L_y$. In particular, one has the canonical restriction map $D(K_x|k) \to D(L_y|k)$, $v_x \mapsto w_y := v_x|_{L_y}$, and to simplify notation, we set $l_y := L_y w_y$ and $k_x := K_x v_x$, hence $\mathcal{O}_{v_y} \hookrightarrow \mathcal{O}_{v_x}$ gives rise to the canonical residue field k-embedding $k_x|l_y$.

We say that $w_y \in D(L_y|k)$ is pseudo-split under f, if for every $\sigma \in G_{l_y}$ there are $x \in X_y$ and $v_x \in D(K_x|k)$ satisfying: $w_y = v_x|_{L_y}$, $e(\nu_x|w_y) = 1$ if w_y is non-trivial, and $k_x \otimes_{l_y} \overline{\mathbb{T}}_y$ has a factor which is a field stabilized by σ. Further, we say that $y \in Y$ is pseudo-split under f if all $w_y \in D(L_y|k)$ are pseudo-split under f, and that f is pseudo-split if all $y \in Y$ are pseudo-split. Finally consider the following hypothesis:

$$f : X \to Y \text{ is a pseudo-split morphism of } k\text{-varieties.} \tag{*}$$

Theorem 1.2. Let $f : X \to Y$ be a morphism of arbitrary varieties over a number field k. Then f satisfies hypothesis (\ast) iff f has property (Srj).

We will prove actually a more general result, see Theorem 3.2 in section 3. The main point in our approach is to use Ax–Kochen–Ershov Principle (AKE) type results (together with some general model-theoretical principles about rational points and ultraproducts of local fields), as originating from [Ax, A-K1, A-K2], see e.g. [P-R] for details on AKE. Moreover, a weak form of AKE in positive characteristic, see hypothesis (qAKE)$_{\Sigma_k}$ after Fact 2.6 below, implies that (\ast) suffices for (Srj) to hold. To the contrary, [Df2] and [LSS] are based on quite deep desingularization results, building on previous results and ideas, see e.g. [Df1, L-S, Sk] aimed—among other things—at giving arithmetic geometry proofs of AKE. (Note that [Df2], subsection 6.3, gives a sketch of a short proof of (CCT) using the AKE Principle.) Finally, it is an interesting question whether the methods of this note could be used to prove similar results to the very recent manuscript by DAMIÁN GVIRTZ [Gv].

Here is an enlightening example—pointed out to me by DANIEL LOUGHRAN, showing the relation between Theorem 1.1, Theorem 1.2 above, and the previous results.

Example 1.3. Let $Y = \text{Proj} k[t_0, t_1]$, $X = V(t_0^2T_0^2 - \epsilon t_0^2T_1^2 - t_1^2T_2^2) \subset Y \times_k \text{Proj} k[T_0, T_1, T_2]$, where $\epsilon = \pm 1$. One checks directly that for $k = \mathbb{Q}$ the canonical projection $f : X \to Y$ has the property (Srj), and f is smooth and split above all points $y \in Y$ satisfying $y \neq (1:0)$. Further, for the k-rational point $(1:0) \in Y$ the following hold:
a) If \(\epsilon = 1 \), the fiber \(X_y \) above \(y = (1:0) \in Y \) is smooth, except \(x = (0:0:1) \in X_y \), which is a rationally double point of \(X \), hence not smooth. Thus this situation is not covered by previous work. On the other hand, \(x \) is v.r.l., and the above Theorem 1.1 applies.

b) If \(\epsilon = -1 \), the fiber \(X_y \) above \((1:0) \in Y \) is smooth, except the point \(x = (0:0:1) \in X_y \), which is non-rationally double point of \(X \), hence not a v.r.l. point of \(X \). In particular the previous results and Theorem 1.1 do not apply. On the other hand, \(f \) satisfies hypothesis (\(\ast \)): Namely, all \(y \neq (1:0) \) are split under \(f \), thus quasi-split under \(f \); and for \(y = (1:0) \) one has \(X_y \ni x = (0:0:1) \mapsto (1:0) = y \in Y \). \(K_x = k = L_y \), and \(D(K_x | k) = \{ v_0^k \} = D(L_0 | k) \) with \(v_0^k \) the trivial valuation of \(k \). Hence \(y \) is pseudo-split under \(f \) in the sense defined above.

Acknowledgements. I would like to thank several people at the IHP special programs in the spring 2018 and summer 2019, especially Zoe Chatzidakis, J.-L. Colliot-Thélène, E. Hrushovski, J. Koenigsmann, F. Loeser, Junguk Lee, D. Loughran, B. Poonen, A. Skorobogatov, Arne Smeets, S. Starchenko, Tamás Szamuely, O. Wittenberg, for discussions, comments and suggestions concerning the subject and content of this note.

2. Notations and Basic Facts

2.1. Abstract approximation results for points.

We begin by recalling a few facts, which are/might be well known to experts. See e.g. [B-S], [Ch], [F-J], Ch.7, for details on ultraproducts and other model theoretical facts.

Fact 2.1. Let \((k_i | k)_{i \in I} \) be a family of field extensions, \(\mathcal{P}_I \) be a fixed prefilter on \(I \), and for every ultrafilter \(U \) on \(I \) with \(\mathcal{P}_I \subset U \), let \(^* k_U := \prod_{i \in I} k_i / U \) be the corresponding ultraproduct. Then for every morphism \(f : X \rightarrow Y \) of \(k \)-varieties, the following are equivalent:

i) There is \(I_0 \in \mathcal{P}_I \) such that the map \(f^{k_{i}} : X(k_i) \rightarrow Y(k_i) \) is surjective for all \(i \in I_0 \).

ii) The map \(f^{k_{U}} : X(^* k_{U}) \rightarrow Y(^* k_{U}) \) is surjective for all ultrafilters \(U \).

In particular, if \(I \) is infinite, then \(f^{k_{i}} : X(k_i) \rightarrow Y(k_i) \) is surjective for almost all \(i \in I \) if and only if \(f^{k_{U}} : X(^* k_{U}) \rightarrow Y(^* k_{U}) \) is surjective for all non-principal ultrafilters \(U \) in \(I \).

Proof. To i) \(\Rightarrow \) ii): To simplify notation, we can suppose that \(I = I_0 \), or equivalently, \(f^{k_{i}} : X(k_i) \rightarrow Y(k_i) \) is surjective for every \(i \in I \). Let \(U \) be an ultrafilter on \(I \) with \(\mathcal{P}_I \subset U \), and \(^* y_U \in Y(^* k_{U}) \) be defined by \(\kappa(y) \mapsto ^* k_{U} \) for some \(y \in Y \). Let \(V \subset Y \) be an affine open neighborhood of \(y \), say \(k[V] = k[u] := S \) with \(u := (u_1, \ldots, u_n) \) a system of generators of the \(k \)-algebra \(S \). Then by mere definitions, there is a system \(u_{U} \) of \(n \) elements of \(^* k_{U} \) such that \(^* y_{U} \) is defined by the morphism of \(k \)-algebras

\[^* \psi_{U} : S \rightarrow S/y \ni ^* k_{U}, \quad u \mapsto u_{U}. \]

Hence, \(U \)-locally, there exist systems \(u_{i} \) of \(n \) elements of \(k_{i} \) and morphisms of \(k \)-algebras

\[\psi_{i} : S \rightarrow S/y \ni k_{i}, \quad u \mapsto u_{i}, \]

defining \(^* \psi_{U} \), i.e., \(u_{U} = (u_{i})_{i} / U \), and let \(y_{i} \in Y(k_{i}) \) be the \(k_{i} \)-rational point defined by \(\psi_{i} \).

Finally, let \((U_{\alpha})_{\alpha} \), \(U_{\alpha} = \text{Spec} \ R_{\alpha} \), be a finite open affine covering of \(f^{-1}(V) \subset X \). Then \(X(k_{i}) = \cup_{\alpha} U_{\alpha}(k_{i}) \) for all \(k_{i} \), and \(y_{i} \in \cup_{\alpha} f(U_{\alpha}(k_{i})) \) for every \(i \in I \). Since \((U_{\alpha})_{\alpha} \) is finite, there exists some \(U := U_{\alpha_0} \) such that \(U \)-locally one has: \(y_{i} \in f(U(k_{i})) \). Equivalently, \(U \)-locally, there exists \(x_{i} \in U(k_{i}) \) such that \(f^{k_{i}}(x_{i}) = y_{i} \). Let \(R := k[U] \) be the \(k \)-algebra of finite
type with $U = \text{Spec } R$. Then $f|_U : U \to V$ is defined by a unique morphism $f^\#_{UV} : S \to R$ of k-algebras, and there is a unique k-morphism

$$\phi_i : R \to R/x_i \hookrightarrow k_i$$

defining $x_i \in U(k_i)$. Further, the fact that $f^{k_i}(x_i) = y_i$ is equivalent to $\phi_i \circ f^\#_{UV} = \psi_i$. Hence if $^*\phi_{i*} : R \to ^*k_{i*}$ is the k-morphism having U-local representatives $\phi_i : R \to k_i$, then one has

$$^*\phi_{i*} \circ f^\#_{UV} = ^*\psi_i.$$

Hence if $^*x_{i*} \in X(^*k_{i*})$ is the $^*k_{i*}$-rational point of X defined by $^*\phi_{i*}$, then $f^*k_{i*}(^*x_{i*}) = ^*y_{i*}$.

To ii) \Rightarrow i): By contradiction, suppose that for every $J \in P_I$ there exists $j \in J$ such that $f^{k_j} : X(k_j) \to Y(k_j)$ is not surjective. Then setting $I' := \{i \in I \mid f^{k_i}$ is not surjective$, one has: $\mathcal{P}_I' := \{I \cap I' \mid J \in \mathcal{P}_I \}$ is a prefilter on I', and since $\mathcal{P}_I \prec \mathcal{P}_I'$, every ultrafilter \mathcal{U}' on I' containing \mathcal{P}_I' is the restriction $\mathcal{U}' = \mathcal{U}|_{I'}$ of an ultrafilter \mathcal{U} on I containing \mathcal{P}_I. Hence mutatis mutandis, w.l.o.g., we can suppose that there is an ultrafilter \mathcal{U} continuing \mathcal{P}_I and a set $J \in \mathcal{U}$ such that f^{k_i} is not surjective for all $i \in J$. Let $(V_\beta)_\beta$ be a finite open affine covering of Y. Then reasoning as above, there exists some $V := V_{\beta_0}$ such that \mathcal{U}-locally one has: $V(k_i) \not\subseteq f^{k_i}(X(k_i))$. Equivalently, \mathcal{U}-locally, there exists $y_i \in V(k_i)$ such that $y_i \not\in f^{k_i}(X(k_i))$. That being said, let $\psi_i : S := k[V] \to k_i$ be the morphism of k-algebras defining $y_i \in V(k_i)$, and $^*\psi_{i*} : S \to ^*k_{i*}$ be the k-morphism defined by $(\psi_i)_i$. Then $^*\psi_{i*}$ defines a $^*k_{i*}$-rational point $^*y_{i*} \in V(^*k_{i*}) \subseteq Y(^*k_{i*})$. Hence by the hypothesis, there is $^*x_{i*} \in X(^*k_{i*})$ such that $f^*k_{i*}(^*x_{i*}) = ^*y_{i*}$. Let $y \in V$ and $x \in X$ be such that $^*y_{i*}$ and $^*x_{i*}$ are defined by k-embeddings $\kappa(y) \hookrightarrow ^*k_{i*}$, respectively $\kappa(x) \hookrightarrow ^*k_{i*}$. Then choosing $U \subseteq X$ affine open with $x \in U$ and $f(U) \subseteq V$, and setting $R := k[U]$, the following hold:

a) $f|_U : U \to V$ is defined by a unique morphism of k-algebras $f^\#_{UV} : S \to R$.

b) $^*x_{i*}$ is defined by a unique morphism of k-algebras $^*\phi_{i*} : R \to R/x \to ^*k_{i*}$.

c) One has that $^*\psi_{i*} = ^*\phi_{i*} \circ f^\#_{UV}$.

Therefore, letting $\phi_i : R \to k_i$ be \mathcal{U}-local representatives for $^*\phi_{i*}$, by the general nonsense of ultraproducts, \mathcal{U}-locally one has:

$$\psi_i = \phi_i \circ f^\#_{UV}.$$

Hence if x_i is the k_i-rational point of X defined by $\phi_i : R \to k_i$, it follows that $f^{k_i}(x_i) = y_i$. Therefore, \mathcal{U}-locally, one must have that $y_i \in f(X(k_i))$, contradiction!

Finally, for the last assertion of Fact 2.1, we notice: First, the set \mathcal{P}_I of all the cofinite subsets of I is a prefilter on I, and $I' \in \mathcal{P}_I$ iff $I \setminus I'$ is finite. Second, an ultrafilter \mathcal{U} on I is non-principal iff $\mathcal{P}_I \subset \mathcal{U}$. Conclude by applying the equivalence i) \iff ii) to this situation. □

Definition 2.2. A field k-embedding $k' \to l'$ is called quasi-elementary, if there are field k-embeddings $k' \to l' \to k'' \to l''$ with $k''|k'$ and $l''|l'$ elementary k-embeddings.

Fact 2.3. Let $f : X \to Y$ be a morphism of varieties over an arbitrary base field k, and let \mathcal{C}_f be the class of all the field extensions $k'|k$ with $f^{k'} : X(k') \to Y(k')$ surjective. One has:

1) \mathcal{C}_f is an elementary class, i.e., \mathcal{C}_f is closed w.r.t. ultraproducts and sub-ultrapowers.

2) Let $k' \hookrightarrow l'$ be a quasi-elementary k-field extension. Then $k' \in \mathcal{C}_f$ iff $l' \in \mathcal{C}_f$.

Proof. Assertion 1) follows from Fact 2.1 by mere definition. To 2): We begin by noticing that $X(\bar{k}) \subset X(\bar{l})$ for all k-field extensions $\bar{k} \subset \bar{l}$. First, consider the case $l' \in \mathcal{C}_f$. Then
one has $Y(k') \subset Y(l') = f^{l'}(X(l')) \subset f^{k''}(X(k''))$, hence $Y(k') \subset f^{k'}(X(k'))$, because k' is existentially closed in k''. Hence finally $Y(k') = f^{k'}(X(k'))$. Second, let $k' \in C_f$. Embeddings $k' \rightarrow l' \rightarrow k'' \rightarrow l''$ as in Definition 2.11 imply both: $k'' \in C_f$, by assertion 1) above; and l' is existentially closed in l''. Hence reasoning as in the first case, one gets $l' \in C_f$.

2.2. Ultraproducts of localizations of arithmetically significant fields.

We introduce notation and recall well known facts. We generalize the context in which the conclusion of Theorem 1.2 holds, finally allowing to announce Theorem 3.2 below.

For arbitrary fields k, consider sets Σ_k of (equivalence classes of) discrete valuations v of k such that for all finite non-empty subsets $A \subset k$ one has:

$$(\mathcal{P}) \quad U_A := \{v \in \Sigma_k | A \subset O_k^\times \} \neq \emptyset,$$

hence $\mathcal{P}_\Sigma := \{U_A | A \subset k^\times \text{ finite}\}$ is a prefilter on Σ_k.

Example 2.4.

Let X be an integral S-variety, where S is either \mathbb{Z} or a field k_0, $X_0 \subset X$ be the set of regular closed points in X, and $\kappa(X)$ be the function field of X. One has:

1) Σ_k satisfies (\mathcal{P}) iff $X_{\Sigma_k} := \{x_v \in X | x_v$ is the center of $v \in \Sigma_k\}$ is Zariski dense in X.

2) If X_0 is Zariski dense, there are Σ_k with $X_{\Sigma_k} = X_0$, and satisfying the following:

a) If X is an integral \mathbb{Z}-variety, then $kv = \kappa(x_v)$ for all $v \in \Sigma_k$.

b) If X is an integral variety over a field k_0, then $kv = \kappa(x_v)$ for all $v \in \Sigma_k$.

Notations/Remarks 2.5.

Given k and Σ_k as above, let k_v be the completion of k at $v \in \Sigma_k$, and \mathcal{U} always denote ultrafilters on Σ_k with $\mathcal{P}_\Sigma \subset \mathcal{U}$. Given \mathcal{U}, consider the ultraproducts:

$${}_k \kappa_{\mathcal{U}} := \prod_v k_v / \mathcal{U}, \quad {}_v \mathcal{O}_\mathcal{U} := \prod_v \mathcal{O}_v / \mathcal{U}, \quad {}_v m_\mathcal{U} := \prod_v m_v / \mathcal{U}, \quad \kappa_{\mathcal{U}} := \prod_v k_v v / \mathcal{U}.$$

Then ${}_v \mathcal{O}_\mathcal{U}$ is the valuation ring of ${}_k \kappa_{\mathcal{U}}$, say ${}_v \mathcal{O}_\mathcal{U} = {}_v \mathcal{O}_v$ of the valuation $v_{\mathcal{U}}$, with valuation ideal ${}_v m_\mathcal{U} = {}_v m_v$, residue field ${}_k \kappa_{\mathcal{U}} v_{\mathcal{U}} = \kappa_{\mathcal{U}}$, and value group ${}_v \mathcal{O}_\mathcal{U} = \prod_v v k / \mathcal{U} = \mathbb{Z}^\Sigma_k / \mathcal{U}$.

1) One has the (canonical) diagonal field embedding $*_v : k \hookrightarrow {}_k \kappa_{\mathcal{U}}$, and $*_v$ is trivial on k (by the fact that $\mathcal{P}_\Sigma \subset \mathcal{U}$).

2) If $\omega_v \subset \mathcal{O}_v$ is a set of representatives of k_v, then $*_v \omega_{\mathcal{U}} := \prod_v \omega_v \subset {}_v \mathcal{O}_\mathcal{U}$ is a system of representatives of $*_k \kappa_{\mathcal{U}} v_{\mathcal{U}}$ inside $*_v \mathcal{O}_\mathcal{U}$. In particular, if ω_v are multiplicative, so is $*_v \omega_{\mathcal{U}}$.

3) The value group $*_v \kappa_{\mathcal{U}}$ is a \mathbb{Z}-group. Further, if $\pi_v \in k_v$ is a unifomizing parameter for $v \in \Sigma_k$, then $\pi_{\mathcal{U}} = (\pi_v) / \mathcal{U}$ is an element of minimal value in $*_v \kappa_{\mathcal{U}}$.

4) The field $*_k \kappa_{\mathcal{U}}$ is Henselian with respect to $*_v$, and one has:

a) Suppose that char(k) = 0. Then $*_v$ is trivial on $\mathbb{Q} \subset \kappa_{\mathcal{U}}$, and if $\mathcal{T} \subset {}_v \mathcal{O}_\mathcal{U}$ is any lifting of a transcendence basis of $\kappa_{\mathcal{U}} / \mathbb{Q}$, by Hensel Lemma one has: The relative algebraic closure $\kappa_{\mathcal{U}}' \subset {}_v \mathcal{O}_\mathcal{U}$ of $\mathbb{Q}(\mathcal{T})$ in $*_v$ is a field of representatives for $\kappa_{\mathcal{U}}$.

b) The fields of representatives $\kappa_{\mathcal{U}}' \subset {}_v \mathcal{O}_\mathcal{U}$ for $\kappa_{\mathcal{U}}$ are relatively algebraically closed in $*_k \kappa_{\mathcal{U}}$.

c) For $\kappa_{\mathcal{U}}' \subset k_{\mathcal{U}}$ as above, let $k_{\mathcal{U}} := \kappa_{\mathcal{U}}'(\pi_{\mathcal{U}})^h$ be the Henselization of $\kappa_{\mathcal{U}}'(\pi_{\mathcal{U}})$ w.r.t. the $\pi_{\mathcal{U}}$-adic valuation, and set $v_{\mathcal{U}} := v_{\mathcal{U}}|_{k_{\mathcal{U}}}$. Then one has k-embeddings:

$$k_{\mathcal{U}} := \kappa_{\mathcal{U}}'(\pi_{\mathcal{U}})^h \hookrightarrow {}_k \kappa_{\mathcal{U}}$$

as valued fields, and $\kappa(v_{\mathcal{U}}) = \kappa_{\mathcal{U}} = \kappa(\mathcal{O}_\mathcal{U})$, and further, $v_{\mathcal{U}} \kappa_{\mathcal{U}} = \mathbb{Z} \hookrightarrow \mathbb{Z}^{\Sigma_k} / \mathcal{U} = \mathcal{O}_\mathcal{U}$ are \mathbb{Z}-groups having $\pi_{\mathcal{U}}$ as the element of minimal positive value. Hence the Ax–Kochen–Ershov Principle (AKP) implies:

Fact 2.6. If char(k) = 0, then $k_{\mathcal{U}} \hookrightarrow {}_k \kappa_{\mathcal{U}}$ is an elementary k-embedding of valued fields.
Unfortunately, if char($k) = p > 0$, it is not known whether the conclusion of Fact 2.6 holds. Therefore, for \mathcal{U} on Σ_k as in Remarks/Notations 2.5 above, and the corresponding k-embeddings $k_{\ell} = k_{\ell}(\pi_{\ell})^h \hookrightarrow *k_{\ell}$, consider the following hypothesis—which is weaker than the Ax–Kochen–Ershov Principle (AKE), holding if char(k) is zero:

$$(qAKE)_{\Sigma_k} \quad k_{\ell} \rightarrow *k_{\ell} \text{ are quasi-elementary } k\text{-embeddings for all } \mathcal{U}.$$

In the above notation, one has, see e.g. [Ch], and [F-J], Ch. 11:

Fact 2.7 (Residue fields). Let k be as in Example 2.4, 2).

1) In case a), k_{ℓ} is a perfect \aleph_1-saturated PAC quasi-finite field.1

2) In case b), let k_0 be (perfect) \mathcal{P}AC. Then κ_{ℓ} is (perfect) \mathcal{P}AC and \aleph_1-saturated.

Note that if char($k) = p > 0$, then in case 1) above one has: If $\mathbb{F}_v := \mathbb{F}_p \cap k_v$, then $k_v = \mathbb{F}_v((\pi_v))$ for any $\pi_v \in k$ with $v(\pi_v) = 1$. Hence $\mathbb{F}_{\ell} := \prod_v \mathbb{F}_v/\mathcal{U} \subset *\mathcal{O}_{\ell}$ is a perfect field and a system of representatives for k_{ℓ}. Further, if $\ell \in k$ is part of a separable transcendence basis for $k|\mathbb{F}_p$, then $U_0 := \{v \mid v(t) = 0\}$ lies in \mathcal{U}, and if $a_v = tv \in k_v, v = \mathbb{F}_v$ is the residue of t at v, then $\pi_v := t - a_v \in k_v$ satisfies $v(\pi_v) = 1$, and one has a canonical embedding:

$$k \hookrightarrow \mathbb{F}_v((\pi_v)) = k_v.$$

Thus setting $a_{\ell} := (a_v)_v/\mathcal{U} \in k_{\ell}$, one has $\pi_{\ell} = t - a_{\ell} \in k_{\ell}$. But despite of these special/particular facts, it is unknown whether the conclusion of Fact 2.6 holds in this case.

2.3. Generalized pseudo-split extensions.

We begin by discussing the case of fields k as in Example 2.4, 2), a). Precisely, $k = \kappa(X)$ is the function field of an integral \mathbb{Z}-variety X, and further: $X_0 \subset X$ is the set of closed regular points (which is Zariski open in the set of all closed points), and $X_{\Sigma_k} \subset X_0$ is Zariski dense.

We say that $\sigma \in G_k$ and the co-procyclic extension $\bar{k} | k$ of k are Σ_k-definable, if for all finite Galois extensions $l|k$, and all $U_A \in \mathcal{P}_{\Sigma_k},$ one has:

$$U_{A,l|k}(\sigma) := \{v \in U_A \mid v \text{ unramified in } l|k \text{ and } \text{Frob}(v) = \sigma|_l \} \neq \emptyset.$$

Notice that in the case $X_{\Sigma_k} \subset X_0$ and $kv = \kappa(x_v)$ for all $v \in \Sigma_k$ one has:

- If X_{Σ_k} has Dirichlet density $\delta(X_{\Sigma_k}) = 1$, e.g. if $X_{\Sigma_k} \subset X_0$ is Zariski open, it follows by the Chebotarev Density Theorem, see e.g. Serre [Se1], that all $\sigma \in G_k$ are Σ_k-definable.

- If Σ_k is Frobenian in the sense of Serre [Se2], 3.3, say defined by a finite Galois extension $l|k$ and a set of conjugacy classes $\Phi \subset \text{Gal}(l|k)$, then $\sigma \in G_k$ is Σ_k-definable iff $\sigma|_l \in \Phi$.

Fact 2.8. In the above notation, $\sigma \in G_k$ is Σ_k-definable iff $\bar{k}' = \kappa_{\ell} \cap \bar{k}$ for some \mathcal{U}.

Proof. For the direct implication, notice that $\mathcal{P}_{\Sigma_k}(\sigma) := \{U_{A,l|k}\}_{A,l|k}$ is a prefilter on Σ_k such that any ultrafilter \mathcal{U} containing $\mathcal{P}_{\Sigma_k}(\sigma)$ contains \mathcal{P}_{Σ_k}. Let $l|k$ be a finite Galois extension. Then for $v \in U_{A,l|k}(\sigma) \in \mathcal{U}$, setting $l_v := l k_v$ one has: $l_v|k_v$ is unramified and $l^\sigma = l \cap k_v$. Hence $l^\sigma = l \cap *k_{\ell}$, and finally $\bar{k} = \bar{k} \cap *k_{\ell}$.

Conversely, let \mathcal{U} be such that $\bar{k}' = \kappa_{\ell} \cap \bar{k}$. To show that σ is Σ_k-definable, we have to show that all the sets $U_{A,l|k}(\sigma)$ are non-empty. First, since $\bar{k}' = \kappa_{\ell} \cap \bar{k}$, it follows that for every finite Galois extension $l|k$, one has $l^\sigma = \kappa_{\ell} \cap l$. Hence for every $l|k$ there exists a set

1That is, the absolute Galois group $G_{k_{\ell}}$ of k_{ℓ} is $G_{k_{\ell}} \cong \hat{\mathbb{Z}} \cong \mathbb{Z}_p$, where \mathbb{F} is any finite field.
$V_i \in \mathcal{U}$ such that for all $v \in V_i$ one has $l^v = k_v \cap l$. Further, let $U_A \subset \Sigma_k$ be given. Since $\mathcal{P}_{\Sigma_k} \subset \mathcal{U}$, hence $U_A \subset \mathcal{U}$, w.l.o.g., we can suppose that $V_i \subset U_A$. Second, let $B \subset k^\times$ be a finite set such that all discrete valuations w of k with $w(B) = 0$ are unramified in $l|k$. (Note that such sets B exist: If $X_l \rightarrow X$ is the normalization of X in the finite Galois extension $l|k$, then there exists an affine open dense subset $X' \subset U$ such that X_l is étale above X'. Hence if w has its center in X', then w is unramified in $l|k$, etc.) Then setting $A_1 := A \cup B$, one has: $V_i \cap U_{A_1} \subset \mathcal{U}$, and all $v \in V_i \cap U_{A_1}$ are unramified in $l|k$. Hence $U_{A_1}|l|k \neq \emptyset$, thus $U_{A_1}|l|U_{A_1}|l|k$ is non-empty as well, thus concluding that σ is Σ_k-definable. \qed

Definition 2.9. For k as above, let $M|N|k$ be field extensions, and $N'|N$ be algebraic.

1) $N'|N$ is called co-procyclic Σ_k-definable, if $N' = \overline{N}^{\sigma_N}$ for some $\sigma_N \in G_N := \text{Aut}_N(N)$ which is itself Σ_k-definable, i.e., the restriction $\sigma := \sigma_N|_{k} \in G_k$ is Σ_k-definable.

2) $M|N$ is called N'-split, or split above N', if the N'-algebra $M \otimes_N N'$ has a factor M' which is a field and $M'|N'$ is a regular field extension.

Proposition 2.10. Let $M|N$ be function fields over k as in Example 2.4, 2), a). One has:

1) An algebraic extension $N'|N$ is co-procyclic Σ_k-definable if and only if there is \mathcal{U} and a k-embedding $N \hookrightarrow \kappa_\mathcal{U}$ such that $N' = \overline{N} \cap \kappa_\mathcal{U}$.

2) Let $N' = \overline{N} \cap \kappa_\mathcal{U}$ as above be given. Then $M|N$ is split above N' iff $M|N$ is separably generated and $N \hookrightarrow \kappa_\mathcal{U}$ prolongs to a field embedding $M \hookrightarrow \kappa_\mathcal{U}$.

Proof. To 1): To the direct implication: Since $\kappa_\mathcal{U}$ is a perfect pseudo-finite field, $k \leftrightarrow N \leftrightarrow \kappa_\mathcal{U}$ gives rise to embedding of perfect fields $k' = \overline{k} \cap \kappa_\mathcal{U} \hookrightarrow N' = \overline{N} \cap \kappa_\mathcal{U}$ and to surjective projections $\hat{Z} \cong G_{\kappa_\mathcal{U}} \twoheadrightarrow G_{N'} \twoheadrightarrow G_{k'}$. Hence $N'|N$ is by mere definitions co-procyclic and Σ_k-definable. For the converse implication, let $N'|N$ be co-procyclic and Σ_k-definable. Then $k' = \overline{k} \cap N'$ is obviously co-procyclic and Σ_k-definable. Hence, there is some \mathcal{U} such that $k' = \overline{k} \cap \kappa_\mathcal{U}$, and obviously, $N'|k'$ is a regular field extension. We claim that there is a k-embedding $N \hookrightarrow \kappa_\mathcal{U}$ such that $N' = \overline{N} \cap \kappa_\mathcal{U}$, hence $k' \subset N'$. First, $N_0 := Nk' \subset N'$ is a regular function field over k', and setting $\tilde{N}_0 = N_0'$, there is an increasing sequence of cyclic field subextensions $(\tilde{N}_i|N_i)_{i\in N}$ of $\overline{N}|N'$ such that $N' = \cup_{i\in N}N_i$, $\overline{N} = \cup_{i\in N}\tilde{N}_i$, and $\tilde{N}_i|N_i$ is the maximal subextension of $\overline{N}|N'$ of degree $\leq i$. By algebra general non-sense, the sequence $(\tilde{N}_i|N_i)$, and the conditions it satisfies are expressible by a type $p(t)$ over k', where t is a transcendence basis of $N_0|k'$; and since $\kappa_\mathcal{U}$ is a perfect PAC quasi-finite field, the type $p(t)$ is finitely satisfiable. Thus $\kappa_\mathcal{U}$ being \mathcal{U}-saturated, the type $p(t)$ is satisfiable in $\kappa_\mathcal{U}$, thus $N = N_0$ has a k'-embedding $N \hookrightarrow \kappa_\mathcal{U}$ such that $N' = \overline{N} \cap \kappa_\mathcal{U}$.

To 2): For the direct implication, let M' be a factor of $M \otimes_N N'$ such that $M'|N'$ is a regular field extension. Since $N'|N$ contains the perfect closure of N, it follows that $M|N$ must be separably generated (because otherwise all the factors of $M \otimes_N N'$ have non-trivial nilpotent elements). Hence $M = N(Z_N)$ for an integral N-variety Z_N such that $Z_N \times_N N'$ has a geometrically integral irreducible component $Z_{N'}$ of multiplicity one with $M' = N'(Z_{N'})$. Since $\kappa_\mathcal{U}$ is a \mathcal{U}-saturated PAC (quasi-finite) field, $Z_{N'}(\kappa_\mathcal{U})$ contains “generic points” of $X_{N'}$, that is, M' is N'-embeddable into $\kappa_\mathcal{U}$.

For the reverse implication, since $M|N$ is separably generated, it follows that $M \otimes_N N'$ is a product of fields. Let $M \hookrightarrow \kappa_\mathcal{U}$ be a prolongation of $N \hookrightarrow \kappa_\mathcal{U}$. Then

$$N' := \overline{N} \cap \kappa_\mathcal{U} \hookrightarrow \overline{M} \cap \kappa_\mathcal{U} =: M' \hookrightarrow \kappa_\mathcal{U}.$$
are co-procyclic extensions, and $M \otimes_N N'$ has a factor $M_{N'}$ which is N'-embeddable in M'.
Since N' is perfect, $N' = \overline{N} \cap M' \hookrightarrow M'$ is regular, hence $M_{N'}|N'$ is regular. \qed

The Proposition 2.10 above hints at the following generalization of the pseudo-splitness:

Definition 2.11. In Notations/Remarks 2.5, let $M|N$ be a k-field extension, and $j : N \rightarrow \kappa_{\mu}$ be a field k-embedding.

1) An algebraic k-field extension $N'|N$ is called j-definable, if N' is isomorphic to $\overline{N} \cap \kappa_{\mu}$ as N-field extensions. To simplify notation, we write $N' = \overline{N} \cap \kappa_{\mu}$.

2) For $j : N \hookrightarrow \kappa_{\mu}$ defining $N'|N$ as above, $M|N$ is called j-split, if $M|N$ is separably generated, and j prolongs to $M \hookrightarrow \kappa_{\mu}$.

Proposition 2.12. Let $M|N$ be an extension of k-function fields over k. Let $j : N \hookrightarrow \kappa_{\mu}$ be a k-embedding, and $N' = \overline{N} \cap \kappa_{\mu}$ be a j-definable extension of N. One has:

1) Let $M = N(Z_N)$ with Z_N an integral N-variety. Then $M|N$ is j-split iff $Z_N \times_N N'$ is geometrically reduced and $Z_{N}(\kappa_{\mu})$ is Zariski dense.

2) In particular, for a $N' = \overline{N} \cap \kappa_{\mu}$ as above, the following hold:
 a) If κ_{μ} is PAC, $M|N$ is N'-split iff $M \otimes_N N'$ factor M' with $M'|N'$ regular.
 b) If $\text{char}(k) = 0$, $M|N$ is N'-split iff $j : N \hookrightarrow \kappa_{\mu}$ has a prolongation $M \hookrightarrow \kappa_{\mu}$.

Proof. To 1): The implication \Rightarrow is simply a reformulation in terms of algebraic geometry of the fact that $M|N$ is N'-split. For the converse implication, one has: First, $Z_{N'} := Z_N \times_N N'$ being reduced, its ring of rational functions is the product of the function fields $M'_\alpha := N'(Z'_\alpha)$ of the irreducible components Z'_α of $Z_{N'}$. Second, since $Z_N(\kappa_{\mu})$ is Zariski dense, $Z'_\alpha(\kappa_{\mu})$ is Zariski dense for some α. And since κ_{μ} is δ_1-saturated, by general model theoretical nonsence, $Z'_\alpha(\kappa_{\mu})$ contains “generic points” of the N'-variety Z'_α. Finally, each such point defines an N'-embedding $M'_\alpha = N'(Z_\alpha) \hookrightarrow \kappa_{\mu}$, which prolongs $j : N \hookrightarrow \kappa_{\mu}$.

To 2): First, the implication \Rightarrow is the same as in assertion 1. The converse implication in case b) is clear, and in case a) it follows from assertion 1): Since κ_{μ} is a PAC field, and $Z_{N'}$ is a geometrically integral N'-variety, it follows that $Z_{N'}(\kappa_{\mu})$ is Zariski dense, etc. \qed

Corollary 2.13 (Example 2.4 revisited). Let k and Σ_k be as in Example 2.4, 2). Let $N|k$ be a function field over k, and $N'|N$ be j-definable. A k-extension of function fields $M|N$ is N'-split iff $M \otimes_N N'$ has a factor M' such that $M'|N'$ is a regular field extension.

3. Proof of (Generalizations of) Theorem 1.2

3.1. Setup for a generalization of Theorem 1.2.

The generalization of Theorem 1.2 we aim at is based on generalizing hypothesis (\star), i.e.,
the notion of pseudo-split morphism $f : X \rightarrow Y$, as already hinted at in Definition 2.11. In order to do so, we begin by recalling the following obvious facts concerning splitness.

First, let $M|N$ be a field extension, and $N'|N$ be an algebraic extension with N' perfect. Then the following are equivalent:

i) $M|N$ is N'-split (and if so, $M \otimes_N N'$ has regular field extension $M'|N'$ as a factor).

ii) $M|N$ is separably generated, and $\overline{N} \cap M$ is embeddable in N'.

Second, let $M|N$ be N'-split, $L|M$ be M'-split. The following transitivity of splitness holds:

a) If \(N' = M' \cap N \), then \(L|N \) is split above \(N' \).

b) If \(\tilde{M}|N \hookrightarrow M|N \) and \(\tilde{N}'|N \hookrightarrow N'|N \) are subextensions, then \(\tilde{M}|N \) is \(\tilde{N}' \)-split.

Next recall that for morphisms \(f : X \to Y \) of \(k \)-varieties, the reduced fiber \(X_y \subset X \) at \(y \in Y \), and \(x \in X_y \), we set \(L_y := \kappa(y) \hookrightarrow \kappa(x) =: K_x \). In particular, one has the canonical restriction map \(D(K_x | k) \to D(L_y | k) \), and for \(v_x \in D(K_x | k) \) and \(w_y := v_x|L_y \), one has the canonical \(k \)-embedding of residue function fields \(l_y := L_y w_y \hookrightarrow K_x v_x =: k_x \).

Definition 3.1. Let \(k \), \(\Sigma_k \), and \(U \) be as in Remarks/Notations 2.5. Recalling Definition 2.11, for morphisms of \(k \)-varieties \(f : X \to Y \), define:

1. \(w_y \in D(L_y | k) \) is \(\Sigma_k \)-pseudo-split under \(f \), if for all \(U \) and all \(k \)-embeddings \(j : l_y \hookrightarrow \kappa_U \) there is \(v_x \in D_{w_y} \) such that \(k_x|l_y \) is \(j \)-split, and \(e(v_x | w_y) = 1 \) if \(w_y \) is non-trivial.

2. We say that \(f \) is \(\Sigma_k \)-pseudo-split if all \(w_y \in D(L_y | k) \), \(y \in Y \), are \(\Sigma_k \)-pseudo-split under \(f \).

Finally, the generalization of hypothesis (\(\ast \)) we were hinting at is the following hypothesis:

\((\ast)_{\Sigma_k}\) \quad \(f : X \to Y \) is a \(\Sigma_k \)-pseudo-split morphism of \(k \)-varieties.

Correspondingly, the natural generalization of (Srj) from Introduction is the property:

\((\text{Srj})_{\Sigma_k}\) \quad \(f^{k_v} : X(k_v) \to Y(k_v) \) is surjective for all \(v \in U_A \) for some \(A \subset k^{\times} \).

Notice that for number fields \(k \) and \(\Sigma_k = \mathbb{P}(k) \) one has: The hypotheses (\(\ast \)) and (\(\ast \))\(_{\Sigma_k}\) are equivalent, and so are properties (Srj) and (Srj)\(_{\Sigma_k}\). Further, (qAKE)\(_{\Sigma_k}\) holds (by the usual Ax–Kochen–Ershov Principle). Hence Theorem 1.2 follows from the more general:

Theorem 3.2. In Notations/Remarks 2.5, let \(k \) endowed with \(\Sigma_k \) satisfy (qAKE)\(_{\Sigma_k}\). Then for a morphism \(f : X \to Y \) of \(k \)-varieties the following hold:

1. If \(f \) satisfies hypothesis (\(\ast \))\(_{\Sigma_k}\), then \(f \) has property (Srj)\(_{\Sigma_k}\).

2. Let \(\text{char}(k) = 0 \). Then \(f \) satisfies hypothesis (\(\ast \))\(_{\Sigma_k}\) iff \(f \) has property (Srj)\(_{\Sigma_k}\).

The proof of Theorem 3.2 is reduced to proving the Key Lemma 3.3 below as follows: First, by Fact 2.1, the property (Srj)\(_{\Sigma_k}\) is equivalent to \(f^{k_U} : X(^*k_U) \to Y(^*k_U) \) being surjective for all \(U \). Second, by Fact 2.3 combined with Fact 2.6, and the hypothesis (qAKE)\(_{\Sigma_k}\), the surjectivity of \(f^{k_U} \) is equivalent to the surjectivity of \(f^{k_U} : X(k_U) \to Y(k_U) \). Hence the property (Srj)\(_{\Sigma_k}\) is equivalent to the following condition in terms of ultrafilters:

\((\text{Srj})_U\) \quad \(f^{k_U} : X(k_U) \to Y(k_U) \) is surjective for every \(U \).

This reduces the proof of Theorem 3.2 to proving the following:

Key Lemma 3.3. Let \(k \), \(\Sigma_k \) be as in Notations/Remarks 2.5, and hypothesis (qAKE)\(_{\Sigma_k}\) be satisfied. Then for a morphism \(f : X \to Y \) of \(k \)-varieties the following hold:

1. If \(f \) satisfies hypothesis (\(\ast \))\(_{\Sigma_k}\), then \(f \) has the property (Srj)\(_U\).

2. Let \(\text{char}(k) = 0 \). Then \(f \) satisfies hypothesis (\(\ast \))\(_{\Sigma_k}\) iff \(f \) has the property (Srj)\(_U\).

3.2. Proof of the Key Lemma 3.3.

We begin by recalling basic facts from valuation theory, which are well known to experts.

Fact 3.4. Let \(\Omega, w \) be a Henselian field with \(\text{char}(\Omega w) = 0 \). Then every subfield \(l \subset \Omega \) with \(w|l \) trivial is contained in a field of representatives \(\kappa' \subset \Omega \) for \(\Omega w \).
Proof. This is a well known consequence of the Hensel Lemma.

We next recall basic facts about valuations without (transcendence) defect, see [BOU], Ch. VI, and [Ku], for some/more details on (special cases of) this. Let \(\Omega, w \) be a valued field with \(w|_{\kappa_0} \) trivial on the prime field \(\kappa_0 \) of \(\Omega \). One says that \(w \) has no (transcendence) defect if there exists a transcendence basis of \(\Omega|_{\kappa_0} \) of the form \(\mathcal{T}_w \cup \mathcal{T} \) satisfying the following: First, \(w|\mathcal{T}_w \) is a basis of the \(\mathbb{Q} \)-vector space \(w\Omega \otimes \mathbb{Q} \), and second, \(\mathcal{T} \) consists of \(w \)-units such that its image \(\mathcal{T}w \) in the residue field \(\Omega w \) is a transcendence basis of \(\Omega w|_{\kappa_0} \). In particular, if \(\kappa'_T \subset \Omega \) is the relative algebraic closure of \(\kappa_0(\mathcal{T}) \) in \(\Omega \), then \(\kappa'_T \) is a maximal subfield of \(\Omega \) such that \(w \) is trivial on \(\kappa'_T \), and further, \(\Omega w \) is algebraic over \(\kappa'_T w \). Moreover, if \(w \) is Henselian, then Hensel Lemma implies that \(\Omega w \) is purely inseparable over \(\kappa'_T w \).

One of the main properties of valuations \(w \) without defect is that for any subfield \(N \subset \Omega \), the restriction of \(w \) to \(N \) is a valuation without defect as well, see [Ku]. In particular, if \(l \subset \Omega \) is any subfield such that \(w|_l \) is trivial, and \(N|l \) is a function field, then \(w|_N \) is a prime divisor of the function field \(N|l \) if and only if \(w|_N \) is a discrete valuation.

Hence for the field \(k_u = \kappa'_T(\pi_u)^h \) endowed \(v_u \) from Notations/Remarks 2.5, 4), c), one has:

Fact 3.5. Let \(l \subset k_u \) be a subfield with \(v_u \) trivial on \(l \). Let \(N|l \) be a function field and \(N \hookrightarrow k_u \) an \(l \)-embedding. Then \(w := v_u|_N \) is either trivial, or a prime divisor of \(N|l \)

Proof. This is an immediate consequence of the discussion above.

Fact 3.6. Let \(N^h \) be the Henselization of a function field \(N|l \) w.r.t. a prime divisor \(w \). Let \(\kappa'|_T \subset \Omega \) be a field of representatives for \(Nw \), and \(\pi \in N \) have \(w(\pi) = 1 \). Then \(N^h = \kappa'(\pi)^h \).

Proof. The Henselian subfield \(\tilde{N} := \kappa'(\pi)^h \) of \(N^h \) satisfies \(\tilde{N}w = N^hw \) and \(w\tilde{N} = wN \). Since \(w \) has no defect, the fundamental equality holds. Hence \([N^h: \tilde{N}] = e(N^h|\tilde{N})f(N^h|\tilde{N}) = 1 \), thus finally implying \(N^h = \tilde{N} = \kappa'(\pi)^h \).

3.2.1. Proof of assertion 1) of the Key Lemma 3.3.

Let \(y_u \in Y(k_u) \) be defined by a point \(y \in Y \) and a \(k \)-embedding \(j_u : L_y \hookrightarrow k_u \). By Fact 3.5 above, \(w := v_y := v_u|_{L_y} \in \mathcal{D}(L_y|k) \) is either trivial or a prime divisor of \(L_y|k \), and let \(j : l_y \hookrightarrow \kappa_u \) be the corresponding \(k \)-embedding of the residue fields. Since \(f \) is \(\Sigma_k \)-pseudo-split, there is \(x \in X_y \) and \(v := v_x \in \mathcal{D}(K_x|k) \) on \(K_x = \kappa(x) \) such that \(w = v|_{L_y} \), the residue field embedding \(k_x|l_y \hookrightarrow \kappa_u \) is \(j \)-split, and \(e(v|w) = 1 \) if \(w \) is non-trivial. Hence by definitions, \(k_x|l_y \) is separably generated, and \(j : l_y \hookrightarrow \kappa_u \) has a prolongation \(i : k_x \hookrightarrow \kappa_u \). Let \(\mathcal{T}_0 \) be a separable transcendence basis of \(k_x \) over \(l_y \), and \(\mathcal{T} \subset K_x \) be a preimage of \(\mathcal{T}_0 \) under the canonical residue field projection \(O_v \rightarrow \bar{K}_v \). One has the following:

- Setting \(N := L_y \) and \(M := K_x \), one has \(Nw = l_y, k_x = Mv, \) and further: \(\mathcal{T}_0 \) is a separable transcendence basis of \(M|L_y \) over \(Nw, \) and \(\mathcal{T} \subset M \) is a preimage of \(\mathcal{T}_0 \) under \(O_v \rightarrow Mv. \)

- Set \(N_T := N(\mathcal{T}) \subset M. \) Since \(w = v|_N \), it follows by mere definition that \(w_T := v|_{N_T} \) is the Gauss valuation of \(N_T \) defined by \(w \) and \(\mathcal{T} \).

- Setting \(\kappa_N := j(Nw) \hookrightarrow i(Mv) =: \kappa_M, \) it follows that \(i(\mathcal{T}_0) \) is a separable transcendence basis of \(\kappa_M \) over \(\kappa_N. \)

- Setting \(N_u := j_u(N) \subset k_u, \) let \(\mathcal{T}_u \subset k_u \) be a preimage of \(i(\mathcal{T}_0) \) under \(O_u \rightarrow \kappa_u, \) and set \(N_{Tu} := N_u(\mathcal{T}_u). \) Then the restriction \(w_{\mathcal{T}_u} \) of \(v_u \) to \(N_{Tu} \) is the Gauss valuation of \(N_u \)
defined by \(w_u = v|_{N_u} \) and \(T_u \). Hence one has a \(k \)-isomorphism of valued fields

\[j_{T_u} : N_T \to N_{T_u} \subset k_u. \]

Let \(N^h_u \subset N^h_{T_u} \subset k_u \) be the Henselizations of \(N_u \subset N_{T_u} \) in \(k_u \). Then since \(\kappa_M \) is finite separable over the residue field \(N_{T_u} w_{T_u} = \kappa_N(t(T_0)) \), one has: There exists a unique algebraic unramified subextension \(M^0_u|N^h_{T_u} \) of \(k_u|N^h_{T_u} \) with residue field \(M^0_u|v_u = \kappa_M \).

Finally, one has the following case-by-case discussion:

Case 1. \(v \) is trivial. Then \(w \) is trivial, hence \(N = Nw \hookrightarrow Mv = M \), and \(\tilde{y} \in Y(k_u) \) is defined by the \(k \)-embedding \(j_u : \kappa(y) = N \to N_u \subset k_u \). In particular, in the above notation, the valuations \(w_T \) and \(w_{T_u} \) are trivial, thus \(N = N^h \hookrightarrow N^h_{T_u} = N_{T_u} \), and \(M^0_u|N_{T_u} \) is a finite separable extension of \(N_{T_u} \) such that the residue map \(\mathcal{O}_{T_u} \to \kappa_{T_u} \) defines an isomorphism \(M^0_u \to \kappa_M \). Hence if \(v_0 : \kappa_M \to M^0_u \) is the inverse of the isomorphism \(M^0_u \to \kappa_M \), one has:

\[v_u : M \overset{\rightarrow}{\leftarrow} \kappa_M \overset{v_0}{\rightarrow} M^0_u \subset k_u \]

is an isomorphism prolonging \(j_u : N \to k_u \), thus defining \(\tilde{x} \in X(k_u) \) such that \(f^{k_u}(\tilde{x}) = \tilde{y} \).

Case 2. \(v \) is non-trivial and \(w \) is trivial, hence \(N = Nw \). Then we can view \(v \) as a prime divisor of \(M|N \), and in the above notation one has: Let \(T \subset M \) be a preimage of a separable transcendence basis \(T_0 \subset Mv \) of \(Mv|N \), and \(N_T = N(T) \). Then \(w_T := v|_{N_T} \) is trivial, and the relative algebraic closure \(M^0 \) of \(N(T) \) in \(M^h \) is a field of representatives for \(Mv \). In particular, if \(\pi \in M \) has \(v(\pi) = 1 \), then \(M^h = M^0(\pi)^h \) by Fact 3.6.

Next, let \(T_u \subset k_u \) be a preimage of \(v(T_0) \subset \kappa_{T_u} \) under the canonical residue map \(\mathcal{O}_{T_u} \to \kappa_{T_u} \). Then \(v_u \) is trivial on \(N_{T_u} = N_{T}(T_u) \), and \(\kappa_M = v(Mv) \) has a unique preimage \(M^0_u \subset k_u \) which is algebraic over \(N_{T_u} \). Finally, the \(k \)-isomorphism \(M^0 \to Mv \to M^0_u \) together with \(\pi \mapsto \pi_u \) give rise to a \(k \)-isomorphisms of fields

\[v_u : M \hookrightarrow M^h = M^0(\pi)^h \overset{\pi}{\cong} M^0_u(\pi_u)^h \subset k_u, \]

whose restriction to \(N = Nw \) is \(j_u \). Hence the \(k_u \)-rational point \(\tilde{x} \in X(k_u) \) defined by

\[v_u : M \hookrightarrow k_u \]

satisfies \(f^{k_u}(\tilde{x}) = \tilde{y} \).

Case 3. \(w \) is non-trivial. Let \(\pi \in N \) be such that \(w(\pi) = 1 \), hence \(v(\pi) = 1 \) by the fact that \(e(v|w) = 1 \). Then \(N_T = N(T) \hookrightarrow M \) gives rise to the embedding of the Henselizations \(M^h|N^h_{T_u} \). Reasoning as above, the unique unramified subextension \(M_0|N^h_{T_u} \) of \(M^h|N^h_{T_u} \) satisfies \(M^h = M_0 \), and \(N_T \to N_{T_u} \) together with \(\pi \mapsto \pi_u \), gives rise to a \(k \)-embedding \(v_u : M \to k_u \) prolonging \(j_u : N \to k \), etc. Hence finally, one gets a point \(\tilde{x} \in X(k_u) \) such that \(f^{k_u}(\tilde{x}) = \tilde{y} \).

3.2.2. *Proof of assertion 2*) of the Key Lemma 3.3.

Since the implication \(\Rightarrow \) is actually assertion 1) of the Key lemma, it is left to prove the converse implication, that is, that property (5j)|\(\Sigma_k \) implies the hypothesis (6j)|\(\Sigma_k \). In Notations/Remarks 2.5, suppose that \(f^{k_u} : X(k_u) \to Y(k_u) \) is surjective for a given \(U \). Let \(y \in Y \), \(N := L_y = \kappa(y) \), and \(w := w_y \in \mathcal{D}(N|k) \), and a \(k \)-embedding \(j : Nw = l_y \hookrightarrow k_u \) be given. We show that there is \(x \in X_y \) such that setting \(M := \kappa(x) \) there is \(v \in \mathcal{D}(M|k) \) such that \(w = v|_N, e(v|w) = 1 \), and \(Nw = l_y \hookrightarrow k_x = Mv \) is \(j \)-split.

Indeed, given \(w \), we define a particular \(k_u \)-rational point \(\tilde{y} = \tilde{y}_w \in Y(k_u) \) as follows: First, if \(w \) is trivial, let \(\tilde{y}_w \) be defined by the \(k \)-embedding \(j : N = \kappa(y) \hookrightarrow k_u \subset k_u \). Second, if \(w \) is non-trivial, hence a prime divisor of \(N|k \), let \(\kappa_w \subset N^h \) be a field of representatives for \(Nw \).
suppose that every field of representatives exists.) Thus by Fact 3.6, one has \(N^h = \kappa_w(\pi)^h \). Hence setting \(k'_w = j(Nw) \subset k_\ell \subset k_\ell \), one has that \(N^h \) has a canonical \(k \)-embedding \(j^h_{\ell} : N^h = \kappa_w(\pi)^h \to \kappa'_w(\pi)^h \subset k_\ell \) via \(j : k_w \to Nw \to k'_w \subset k_\ell, \pi \mapsto \pi_{\ell} \).

Let \(\bar{y} \in Y(k_\ell) \) be defined by the \(k \)-embedding \(j_{\ell} := j^h_{\ell} | N : N \hookrightarrow N^h \hookrightarrow k_\ell \). Then by property \((\text{Srj})_{\Sigma_k}\), there is some \(\bar{x} \in X(k_\ell) \) such that \(j^k_{\ell}(\bar{x}) = \bar{y} \), and let \(\bar{x} \) be defined by some \(x \in X \) and a \(k \)-embedding \(v_{\ell} : M = \kappa(x) \hookrightarrow k_\ell \). Then by mere definition one has \(f(x) = y \), and the canonical \(k \)-embedding \(f_{xy} : N = \kappa(y) \hookrightarrow \kappa(x) = M \) satisfies \(v_{\ell} \circ f_{xy} = j_{\ell} \).

Hence setting \(v := v_{\ell}|_M, \) one has \(w = v|_N, \) and the following hold: First, one has a canonical \(k \)-embedding \(Nw \hookrightarrow Mv \hookrightarrow k_\ell \). Second, one has canonical embeddings \(wN \hookrightarrow vM \hookrightarrow v_{\ell}k_\ell; \) and if \(w \) is non-trivial, then by the definition of \(w \) one has: \(w(\pi) = 1 = v_\ell(\pi_{\ell}) \), hence \(wN \hookrightarrow vM \hookrightarrow v_{\ell}k_\ell \) are isomorphisms, and \(e(v|w) = 1 \). Finally, since \(j : Nw \hookrightarrow k_\ell \) prolongs to a \(k \)-embedding \(Mv \hookrightarrow k_\ell \), it follows that \(Mv|Nw \) is \(j \)-split.

3.3. Final Remarks.

First, it is believed that the hypothesis \((qAKE)_{\Sigma_k}\) always holds, in particular, assertion 1) of Theorem 3.2 should hold unconditionally. Second, the question whether assertion 2) of Theorem 3.2 holds in positive characteristic, is related to subtle questions concerning the relationship between ramification index and purely inseparable non-liftable extensions of the residue field of prime divisors. Hence it is an interesting (and maybe subtle) question whether assertion 2) of Theorem 3.2 holds (un)conditionally in positive characteristic.

4. Proof of Theorem 1.1

By mere definitions, Theorem 1.1 is a consequence of Theorem 1.2 and Theorem 4.1 below. The latter relates the pseudo-splitness of prime divisors in extensions of function fields and pseudo-splitness of morphisms of proper integral v.r.l. varieties over arbitrary fields \(k \). We say that a function field \(N|k \) is valuation-regular-like, if \(N|k \) has a co-final system of proper valuation-regular-like models \((Z_\alpha)_\alpha\). By Hironaka’s Desingularization Theorem, one has:

\[\text{If } \text{char}(k) = 0, \text{ every function field } N|k \text{ is v.r.l.} \]

Theorem 4.1. Let \(f : X \to Y \) be a dominant morphism of proper valuation-regular-like \(k \)-varieties, and suppose that \(K = k(X), L = k(Y) \) are valuation-regular-like. Then \(f : X \to Y \) is pseudo-split in the sense defined in the Introduction iff \(\mathcal{D}(L|k) \) is pseudo-split in \(\mathcal{D}(K|k) \).

Proof. Since \(K|L \) is an extension of valuation-regular-like function fields over \(k \), there are cofinal systems \((f_\alpha : X_\alpha \to Y_\alpha)_{\alpha \in I}\) of dominant morphisms of proper valuation-regular-like \(k \)-varieties defining \(K|L \). In particular, the structure morphisms \(X_{\alpha''} \to X_{\alpha'} \) and \(Y_{\alpha''} \to Y_{\alpha'} \), \(\alpha' \leq \alpha'' \) are proper. Further, w.l.o.g., we can and will replace the given projective system \((f_\alpha)_{\alpha \in I}\) by any subsystem \((f_{\alpha'})_{\alpha' \in I'}\) indexed by any co-final segment \(I' \subset I \). In particular, w.l.o.g., we can and will suppose that every \(f_\alpha : X_\alpha \to Y_\alpha \) dominates the given \(f : X \to Y \).

We conclude this preparation by summarizing a few well known facts, to be used later.

Fact 4.2. Let \(v \in \text{Val}_k(N) \) have center \(x_\alpha \in X_\alpha \) for \(\alpha \in I \). Setting \(w := v|_L, \) one has:

1) The center of \(w \) on \(Y_\alpha \) is \(y_\alpha = f_\alpha(x_\alpha) \), and one has:

\[m_v = \cup_\alpha m_{x_\alpha} \subset \cup_\alpha \mathcal{O}_{x_\alpha} = \mathcal{O}_v, \quad m_w = \cup_\alpha m_{y_\alpha} \subset \cup_\alpha \mathcal{O}_{y_\alpha} = \mathcal{O}_w, \]

and therefore, \(Lw = \cup_\alpha \kappa(y_\alpha) \hookrightarrow \cup_\alpha \kappa(x_\alpha) = Kv \) canonically.

2) If \(v \in \mathcal{D}(K|k) \), then \(\mathcal{O}_v = \mathcal{O}_{x_\alpha} \) and \(\mathcal{O}_w = \mathcal{O}_{y_\alpha} \) for \(\alpha \in I_v \) in a cofinal segment \(I_v \subset I \).
4.1. The implication “⇒”.

Given \(w \in \mathcal{D}(L|k) \), we show that \(w \) is pseudo-split in \(\mathcal{D}(K|k) \).

Case 1. \(w \) is the trivial valuation of \(L|k \). Then the center \(y \in Y \) of \(w \) is the generic point \(y = \eta_Y \) of \(Y \), and \(X_y = X_L \) is the generic fiber of \(f : X \to Y \). Further, \(Lw = L \).

Since \(w \) is pseudo-split under \(f \), for every co-procyclic extension \(l'|L \) there exists \(x \in X_L \) and \(v_x \in \mathcal{D}(K_x|k) \) with \(k_x|L \) split above \(l' \). Since \(K|k \) is valuation-regular-like, there exists \(v \in \text{Val}_k(K) \) having center \(x \in X_L \subset X \) such that \(Kv = K_x \).

The valuation theoretical composition \(v := v_x \circ v \) is trivial on \(L \) under \(L \hookrightarrow K \), hence \(w = v|L \), and \(k_x = Kxv_x = Kv \).

Further, by Fact 4.2, if \(x_\alpha \in X_\alpha \) is the center of \(v \) on \(X_\alpha \), one has \(O_v = \cup_\alpha O_{x_\alpha} \), \(m_v = \cup_\alpha m_{x_\alpha} \), and \(k_x = Kv = \cup_\alpha \kappa(x_\alpha) \).

In particular, since \(k_x|k \) is finitely generated, there exists a cofinal segment \(I_x \subset I \) such that \(k_x = K\tilde{v} = \kappa(x_\alpha) \) for all \(\alpha \in I_x \). Since \(K|k \) is valuation-regular-like, for every \(x_\alpha \in X_\alpha \), there exists \(v_\alpha \in \mathcal{D}(K|k) \) with center \(x_\alpha \in X_\alpha \) such that \(Kv_\alpha|K \kappa(x_\alpha) \) is a regular field extension. In particular, for \(\alpha \in I_x \) one has: \(k_x = \kappa(x_\alpha) \) and \(k_x = \kappa(x_\alpha) \hookrightarrow Kv_\alpha \) is a regular field extension. Hence since \(k_x|L \) is split above \(l' \), and \(Kv_\alpha|k_x \) is a regular extension, by transitivity of splitness, it follows that \(Kv_\alpha|L \) is split above \(l' \). Finally, since \(v_\alpha|L \) is trivial, hence \(w = v_\alpha|L \), it follows that \(w \) is pseudo-split in \(\mathcal{D}(K|k) \), as claimed.

Case 2. \(w \) is non-trivial, hence \(w \in \mathcal{D}(L|k) \) is a prime divisor prime divisor of \(L|k \). Let \(y_\alpha \in Y_\alpha \) be the center of \(w \) on \(Y_\alpha \). By Fact 4.2, there is a co-final segment \(I_w \subset I \) such that \(O_w = \cup_\alpha O_{y_\alpha} \), thus \(m_w = m_{y_\alpha} \) and \(Lw = \kappa(y_\alpha) \) for \(\alpha \in I_w \). Letting \(y = \eta_Y \) be the generic point of \(Y \), one has \(Y = L \), and \(w \in \mathcal{D}(L_y) \), and \(X_y = X_L \) is the generic fiber of \(f : X \to Y \).

Let \(l'|Lw \) be a co-procyclic extension. Then \(w \in \mathcal{D}(L_y|k) \) being split under \(f \) implies that there is \(x \in X_y = X_L \) and a prime divisor \(v_x \in \mathcal{D}(K_x|k) \) with \(w = v_x|L \) under \(L \hookrightarrow K_x \) such that \(e(v_x|w) = 1 \) and \(k_x|Lw \) is split above \(l' \). Let \(\pi \in L \) satisfy \(w(\pi) = 1 \), hence in particular, \(v_x(\pi) = 1 \) under the \(k \)-embedding \(L = L_y \hookrightarrow K_x \). Since \(K|k \) is valuation-regular-like, there is \(\tilde{v} \in \text{Val}_k(K) \) with center \(x \in X \) and \(K\tilde{v} = \kappa(x) = K_x \).

In particular, \(\tilde{v}|L \) is trivial on \(L \) under \(L \hookrightarrow K \), and the valuation theoretical composition \(v := v_x \circ \tilde{v} \in \text{Val}_k(K) \) satisfies:

a) \(Kv = Kxv_x = k_x \), and \(w = v|L \) under \(L \hookrightarrow K \), thus \(O_w = O_v \cap L \).

b) Since \(wL = v_xK_x \hookrightarrow vK \), it follows that \(v(\pi) \) is the minimal positive element of \(vK \).

c) In particular, \(m_v = \pi O_v \), hence \(\pi \in m_w \setminus m_v^2 \).

Recalling that \(f_\alpha : X_\alpha \to Y_\alpha \) are proper morphisms, since \(w = v|L \) has the center \(y_\alpha \in Y_\alpha \), it follows that \(v \) has a (unique) center \(x_\alpha \in X_\alpha \), and \(f(x_\alpha) = y_\alpha \). In particular, since \(w = v|L \), by Fact 4.2 one has: First, since \(Kv \) is finitely generated over \(k \), there is a cofinal segment \(I_x \subset I \) such that \(Kv = k_x \) for all \(\alpha \in I_x \). Recalling that \(I_w \subset I \) is a cofinal segment such that \(Lw = \kappa(y_\alpha) \) for all \(\alpha \in I_w \), it follows that \(I' := I_w \cap I_x \) is a cofinal segment in \(I \) such that for all \(\alpha \in I' \) the following hold:

\[O_w = O_{y_\alpha} = O_{x_\alpha} \cap L, \quad m_w = m_{y_\alpha} = m_{x_\alpha} \cap L, \quad Lw = \kappa(y_\alpha) \hookrightarrow \kappa(x_\alpha) = k_x. \]

In particular, \(\pi \in m_{x_\alpha} \), and since \(\pi \notin m_{x_\alpha}^2 \), one has that \(\pi \notin m_{x_\alpha}^2 \) for all \(\alpha \in I' \).

Since \(K|k \) is valuation regular-like, there exists \(v_\alpha \in \mathcal{D}(K|k) \) with center \(x_\alpha \in X_\alpha \) such that \(Kv_\alpha|\kappa(x_\alpha) \) is a regular field extension, and \(v_\alpha(\pi) = 1 \), because \(\pi \in m_{x_\alpha} \setminus m_{x_\alpha}^2 \). Therefore \(w_\alpha := v_\alpha|L \) lies in \(\mathcal{D}(L|k) \), and \(m_{y_\alpha} = m_{x_\alpha} \cap L \). Since \(m_{y_\alpha} = m_{x_\alpha} \cap L \), one has:

\[m_w = m_{y_\alpha} = m_{x_\alpha} \cap L \subset m_{x_\alpha} \cap L = m_{w_\alpha}, \quad \text{hence} \quad O_w \supset O_{w_\alpha}. \]
Since \(w, w_\alpha \) are discrete valuations, one must have \(w = w_\alpha \). Recalling that \(w_\alpha := v_\alpha|_L \), we finally get \(w = v_\alpha|_L \), hence \(e(v_\alpha|w) = 1 \), because \(v_\alpha(\pi) = 1 = w_\alpha(\pi) \). Since \(k_x|Lw \) is \(\ell' \)-split and \(k_x = \kappa(x_\alpha) \hookrightarrow Kv_\alpha \) is a regular field extension for \(\alpha \in I' \), it follows that \(Kv_\alpha|Lw \) is split above \(\ell' \). Conclude that \(w \) is pseudo-split in \(D(K|k) \).

4.2. The implication “ \(\leftarrow \) ”.

Setting \(L_y := \kappa(y) \) for \(y \in Y \), we have to show that every \(w_y \in D(L_y|k) \) is pseudo-split under \(f \) in the sense defined in the Introduction. First, if \(y = \eta_Y \) is the generic point of \(Y \), hence \(L_y = k(Y) =: L \), then the implication follows directly from the fact that \(D(L|k) \) is pseudo-split in \(D(K|k) \). Hence w.l.o.g., \(y \neq \eta_Y \).

Case 1. \(w_y \) is the trivial valuation of \(L_y \), i.e., \(L_y = Lw_y = l_y \). First, since \(L|k \) is regular-like, there exists \(w \in D(L|k) \) having center \(y \in Y \) such that \(Lw|L_y \) is a regular field extension. Let \(\ell'|l_y \) be a co-procyclic extension, and \(l_y|Lw \) be a co-procyclic extension with \(\ell' = \overline{T_y} \cap \ell'_w \). Since \(D(L|k) \) is pseudo-split in \(D(K|k) \), there is \(v \in D(K|k) \) such that \(e(v|w) = 1 \) and \(Kv|Lw \) is split above \(\ell'_w \). Hence if \(x \in X \) is the center of \(v \) on \(X \), then \(y = f(x) \) is the center of \(w \) on \(Y \), \(x \) lies in the fiber \(x \in X_y \) of \(f \) at \(y \), and there are canonical \(k \)-embeddings

\[L_y \hookrightarrow K_x = \kappa(x) \hookrightarrow Kv. \]

In particular, since \(Kv|Lw \) is split above \(\ell'_w \) and \(\ell' = \overline{T_y} \cap \ell'_w \), and \(Lw|L_y \) is a regular field extension, by the transitivity of splitness, it follows that \(\kappa(v|w)_y \) is split above \(\ell' \). Hence finally, since \(K_x|L_y \) is a subextension of \(\kappa(v|Lw) \), it follows that \(K_x|L_y \) is split above \(\ell' \). Hence letting \(v_x \) be the trivial valuation of \(K_x \), it follows that \(e(v_x|w_y) = 1 \), and \(l_y = L_y \hookrightarrow K_x = k_x \) is split above \(\ell'_x \), as claimed.

Case 2. \(w_y \in D(L_y|k) \) is non-trivial. Since \(L|k \) is valuation-regular-like, there exists \(w_L \in D(L|k) \) having center \(y \) on \(Y \) and \(Lw_L = L_y \). Next let \(w := w_y \circ w_L \) be the valuation theoretical composition of \(w_y \) and \(w_L \), hence \(Lw = L_yw_y = l_y \), and \(wL = w_Lw_L \times w_Lw \) lexicographically ordered. In particular, if \(\pi \in \mathcal{O}_{w_L} \) is any element whose image in \(L_y \) is a uniformizing parameter of \(w_y \), then \(l_y = w(\pi) \in wL \) is the unique minimal positive element, and \(m_w = \pi \mathcal{O}_w \). Then letting \(y_\alpha \in Y_\alpha \) be the center of \(w \) on \(Y_\alpha \), one has: \(\mathcal{O}_w = \bigcup_{\alpha \in I} \mathcal{O}_{y_\alpha} \), \(m_w = \bigcup_{\alpha \in I} m_{y_\alpha} = m_w \cap \bigcup_{\alpha \in I} \mathcal{O}_{y_\alpha} \), thus \(l_y = Lw = \bigcup_{\alpha \in I} \kappa(y_\alpha) \). In particular, since \(\pi \in m_w \) and \(l_y|k \) is finitely generated, there is a cofinal segment \(I_y \subset I \) such that the following hold:

a) \(\pi \not\in m_{y_\alpha} \) for all \(\alpha \in I \), and \(\pi \in m_{y_\alpha} \) for all \(\alpha \in I_y \).

b) \(\kappa(y_\alpha) \subset l_y \) for all \(\alpha \in I \), and \(\kappa(y_\alpha) = l_y \) for all \(\alpha \in I_y \).

Finally, since \(L|k \) is valuation-regular-like, taking into account Fact 4.2, there is \(w_\alpha \in D(L|k) \) such that \(\mathcal{O}_{w_\alpha} \) dominates the local ring \(\mathcal{O}_{y_\alpha} \), and further: \(w_\alpha(a) = 1 \) for all \(a \in m_{y_\alpha}\setminus m_{y_\alpha}^2 \), and \(\kappa(y_\alpha) \hookrightarrow Lw_\alpha := l_\alpha \) is a regular field extension. Therefore, for \(\alpha \in I_y \) the following hold:

- \(l_y = \kappa(y_\alpha) \hookrightarrow l_\alpha \) is a regular field extension.
- \(w_\alpha(\pi) = 1 \), hence \(\pi \) generates \(m_{w_\alpha} \).

Next let \(\ell'|l_y \) be a co-procyclic extension, and using that \(l_\alpha|l_y \) is a regular field extension, let \(l'_\alpha|l_\alpha \) be any co-procyclic extension such that \(\ell' = \overline{T_y} \cap \ell'_\alpha \). Since \(D(L|k) \) is pseudo-split in \(D(K|k) \), there is a prime divisor \(v_\alpha \in D(K|k) \) with \(w_\alpha = v_\alpha|_L \) such that \(e(v_\alpha|w_\alpha) = 1 \), and setting \(k_\alpha := Kv_\alpha \) one has: \(k_\alpha|l_\alpha \) is \(\ell'_\alpha \)-split. Then taking into account the transitivity of splitness, since \(\ell' = \overline{T_y} \cap (l'_\alpha) = \overline{T_y} \cap l_\alpha \), one finally gets:

- \(w_\alpha(\pi) = 1 = v_\alpha(\pi) \) under \(L \hookrightarrow K \), and \(k_\alpha|l_\alpha \) is split above \(\ell'_\alpha \) for \(\alpha \in I_y \).
Now let \(\mathcal{P}_I \) be the pre-filter on \(I \) formed by the cofinite subsets \(I' \subset I_y \), and \(\mathcal{U} \) be an ultrafilter on \(I \) containing \(\mathcal{P}_I \). Consider the corresponding ultrapowers \({}^*L_\mathcal{U} \hookrightarrow {}^*K_\mathcal{U} \) of \(L \hookrightarrow K \), endowed with the corresponding ultraproductions of valuations rings
\[
\mathcal{O}_{^*w_\mathcal{U}} = \prod_\alpha \mathcal{O}_{w_\alpha} / \mathcal{U} \hookrightarrow \prod_\alpha \mathcal{O}_{v_\alpha} / \mathcal{U} =: \mathcal{O}_{v_\mathcal{U}},
\]
having value groups and residue fields as follows:
\[
{}^*w_\alpha L_\mathcal{U} = \mathbb{Z}^I / \mathcal{U} = \mathcal{O}_{v_\alpha} / \mathcal{U} = {}^*L_\mathcal{U} \hookrightarrow {}^*K_\mathcal{U} \hookrightarrow \prod_\alpha \mathcal{O}_{v_\alpha} / \mathcal{U} = \mathcal{O}_{v_\mathcal{U}}.
\]
One has: First, since for every \(\alpha, \alpha'' \in I \) there exists \(\alpha \in I_y \) with \(\mathcal{O}_{y_{\alpha''}} \subset \mathcal{O}_{y_{\alpha}} \subset \mathcal{O}_{w_\alpha} \), it follows that \(\mathcal{O}_w = \bigcup_\alpha \mathcal{O}_{y_\alpha} \subset \mathcal{O}_{w_\alpha} \). Hence setting \(w' := {}^*w_\mathcal{U} \big|_L, \ v := {}^*v_\mathcal{U} \big|_K \), one finally has: First, \(\mathcal{O}_w \subset \mathcal{O}_w \subset \mathcal{O}_v \), where the latter inclusion is defined via \(L \hookrightarrow K \). Second, since \(w_\alpha (\pi) = 1 = v_\alpha (\pi) \), it follows that \({}^*w_\mathcal{U} (\pi) = {}^*v_\mathcal{U} (\pi) \) is the minimal positive element in both value groups \({}^*w_\mathcal{U} \mathcal{L}_\mathcal{U} \hookrightarrow {}^*v_\mathcal{U} \mathcal{K}_\mathcal{U} \). Therefore, \(\pi \in \mathcal{O}_w \hookrightarrow \mathcal{O}_v \) is the element of minimal positive value, thus \(\mathcal{O}_w = \mathcal{O}_v \) by general valuation theory. Further, since \(\pi \in \mathcal{O}_{v_\mathcal{U}} \) is an element of minimal positive value, it follows that \(\pi \in \mathcal{O}_v \) is an element of minimal positive value as well. Finally, recalling that \(w = w_y \circ w_L \), hence by mere definitions, \(\mathcal{O}_{w_L} = \mathcal{O}_w [1/\pi] \), it follows that \(\mathcal{O}_{v_K} := \mathcal{O}_v [1/\pi] \) is a \(k \)-valuation ring of \(K \) such that \(\mathcal{O}_{v_K} \cap L = \mathcal{O}_{w_L} \). In particular, since \(X \) is proper, \(v_K \) has a center on \(X \), say \(x \in X \). One has:

\begin{itemize}
 \item[a)] Since \(\mathcal{O}_{w_L} \hookrightarrow \mathcal{O}_{v_K} \) under \(L \hookrightarrow K \), one has \(f (x) = y \), thus \(L_y = \kappa (y) \hookrightarrow \kappa (x) =: K_x \).
 \item[b)] \(\mathcal{O}_{w_y} = \mathcal{O}_w / \mathcal{m}_{w_L} \hookrightarrow \mathcal{O}_v / \mathcal{m}_{v_K} =: \mathcal{O}_v \) are DVRs of \(L_y \hookrightarrow K_x \) with \(w_y (\pi) = 1 = v_x (\pi) \), thus \(\mathcal{m}_{w_y} = \pi \mathcal{O}_{w_y} \subset \pi \mathcal{O}_v = \mathcal{m}_v \), and \(k_x | l_y \) is a \(k \)-subextension of \({}^*l_\mathcal{U} \).
 \item[c)] Since \(k_\alpha | l_\alpha \) is split above \(l_\alpha \) for all \(\alpha \in I_y \), it follows that \({}^*k_\mathcal{U} | {}^*l_\mathcal{U} \) is split above \(l^{*\mathcal{U}} \), thus \(k_x | l_y \) is split above \(l' \) by the transitivity of splitness.
\end{itemize}

Hence \(\kappa (v_x | w_y) = 1 \), and \(k_x | l_y \) is split above \(l' \), thus completing the proof of Case 2.

This completes the proof of Theorem 4.1. \(\square \)

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA
DRL, 209 S 33RD STREET, PHILADELPHIA, PA 19104, USA

E-mail address: pop@math.upenn.edu

URL: https://www.math.upenn.edu/~pop/