Abstract. In this note we show that the quotient field of a domain which is Henselian with respect to a non-trivial ideal is a large field, and give some applications of this fact, using a specialization theorem for ramified covers of the line over (generalized) Krull fields.

1. Introduction

For a field K, let $K(t)$ be the rational function field in t over K, and $pr_t : G_{K(t)} \to G_K$ the corresponding canonical surjective projection between the corresponding absolute Galois groups. Every finite split embedding problem $EP = (\gamma : G_K \to A, \alpha : B \to A)$ for G_K gives rise to $EP_t := (\gamma \circ pr_t : G_{K(t)} \to A, \alpha : B \to A)$, which is a finite split embedding problem for $G_{K(t)}$. The following are two main open (and equivalent) problems in Galois Theory:

Problem$^\infty$. Let K be an arbitrary Hilbertian field. Then every finite split embedding problem EP for G_K has proper solutions.

Problem0. Let K be an arbitrary field. Then for every finite split embedding problem EP for G_K, the corresponding EP_t for $G_{K(t)}$ has proper solutions.

Positive answers to the above Problems would imply —among other things, the Inverse Galois Problem and the Shafarevich Conjecture on the freeness of the kernel of the cyclotomic character. The above Problems have positive solutions over fields K which are large fields, see e.g. [P], Main Theorems A and B. The large fields were introduced in loc.cit., and proved to be the “right class” of fields over which one can do a lot of interesting mathematics, like (inverse) Galois theory, see e.g. COLLIOT-THÉLÈNE [CT], POP [P], and the survey article HARBAZER [Ha1], study torsors of finite groups MORET-BAILLY [MB], study rationally connected varieties KOLLMAR [Ko], study the elementary theory of function fields POONEN-P [P–P], etc.\[1]\]

Recall that a field K is called a large field, if every smooth K-curve C satisfies: If $C(K)$ is non-empty, then $C(K)$ is infinite. Examples of large fields are the PAC fields, the complete fields like $k((x))$, the real/p-adically closed fields, and more general, the Henselian valued fields, the p-fields, etc. See POP [P] for more about large fields.

In recent years, HARBAZER–STEVENSON solved Problem$^\infty$ over $K = k((x, y))$ in a stronger form, see [H–S], Theorem 1.1, by showing that every non-trivial finite split embedding problem for G_K has $|K|$ distinct proper solutions. And very recently, PARAN [Pa] solved Problem0 over $K = \text{Quot}(R)$, where R is a complete Noetherian local ring (satisfying some further

1991 Mathematics Subject Classification. Primary 12E, 12F, 12G, 12J; Secondary 12E30, 12F10, 12G99.

Key words and phrases. Embedding problems, Henselian pairs, Hilbertian fields, large fields.

Supported by NSF grants DMS-0401056 and DMS 0801144.

\[1\] Maybe this is the reason why the “large fields” acquired several other names —google it: ample, AMPLE, épais, fertile, weite Körper, anti-Mordellic, etc.
technical conditions). The methods of proof in both cases are ingenious and quite technical. These results also seemed to give further new evidence for the fact that the Problems above can be solved in general, as it was generally believed that the above fields $K = k((x, y))$, and more general $K = \text{Quot}(R)$ with R complete Noetherian local and Krull.dim(R) > 1, were not large fields. Note that these fields are definitely not Henselian valued fields!

The first point of this short note is to prove that actually $K = k((x, y))$, and more generally, $K = \text{Quot}(R)$ with R a complete Noetherian ring, are large fields, and that the class of large fields is much richer than previously believed. In particular, one can deduce Paran [Pa] from the already known fact that Problem0 has a positive answer over large base fields K. Second, I give a lower bound for the number of distinct solutions of a non-trivial finite split embedding problem over a Hilbertian large field, a result which represents a wide extension of Harbater–Stevenson [H–S]. Finally, using these results, one can generalize Harbater’s result [Ha2], Theorem 4.6, see Theorem 1.3 below, thus giving new evidence for (a stronger form of) Bogomolov’s Freeness Conjecture as presented in Positselski [Ps].

In order to announce the results of this note, let first recall that a commutative ring R with identity is said to be Henselian with respect to an ideal a, or that R, a is a Henselian pair, if denoting $\mathcal{R} := R/a$ and $R[X] \rightarrow \mathcal{R}[X]$, $f(X) \mapsto \overline{f}(X)$ the reduction map (mod a), for every polynomial $f(X) \in R[X]$ the following holds: If $\overline{a} \in \mathcal{R}$ is a root of $\overline{f}(X)$ such that $\overline{f}(\overline{a}) \in \mathcal{R}^\times$, then there exists an $a \in R$ such that $f(a) = 0$ and $f'(a) \in R^\times$. Intuitively, this means that “simple roots” of $\overline{f}(X)$ lift to “simple roots” of $f(X)$. See [Lf] for basic facts about Henselian rings. The following remarks are in place here:

1) a-adically complete rings with $a \neq (0)$, like the power series rings $R = R_0[[x_1, \ldots, x_n]]$ where R_0 is a domain and $a = (x_1, \ldots, x_n)$, are Henselian with respect to a.

2) If K is a Henselian field with respect to a valuation v, and R_v, m_v are the corresponding valuation ring and valuation ideal, then R_v, m_v is a Henselian pair.

3) Nevertheless, if R, a is a Henselian pair, then $K = \text{Quot}(R)$ is in general not a Henselian valued field. This happens for instance if R is Noetherian and Krull.dim(R) > 1.

The generalization of Paran [Pa] is the following:

Theorem 1.1. Let R be a domain which is Henselian with respect to some ideal $a \neq (0)$. Then $K = \text{Quot}(R)$ is a large field. In particular, Problem0 has a positive answer over K.

The generalization of Harbater–Stevenson [H–S], Theorem 1.1, is as follows: Let us denote $R = k[[x, y]]$ and $K = k((x, y)) := \text{Quot}(R)$. First, K is a large field by Theorem 1.1 above, and K is Hilbertian by Weissauer’s [W] Theorem 7.2, applied to the Krull domain R. Second, the set of discrete valuations $\mathcal{V} := \{v_p \mid p \in \text{Spec}(R), p \text{ minimal non-zero}\}$ satisfies:

i) The set $\mathcal{V}_a := \{v \in \mathcal{V} \mid v(a) \neq 0\}$ is finite for every $a \in K^\times$.

ii) If L/K is finite Galois, then $\mathcal{V}_{L/K} := \{v \in \mathcal{V} \mid v \text{ totally split in } L/K\}$ has cardinality $|\mathcal{V}_{L/K}| = |K|$, see e.g., Theorem 3.4.

A field endowed with a set \mathcal{V} of discrete valuations satisfying i), ii), is called a Krull field.

The point is that the property of $K = k((x, y))$ being a Hilbertian large Krull field implies an even stronger/more precise result than [H–S], Theorem 1.1, as follows (see Section 4 for definitions and Theorem 4.3 which strengthens and proves Theorem 1.2 below):

Theorem 1.2. Let K be a Hilbertian large Krull field. Then every non-trivial finite split embedding problem for G_K has $|K|$ independent and totally ramified proper solutions.
Finally, the generalization of Harbater [Ha2], Theorem 4.6, is the following:

Theorem 1.3. Let R, m be an excellent two dimensional Henselian local ring with separably closed residue field k such that $K := \text{Quot}(R)$ has $\text{char}(K) = \text{char}(k)$. If $|k| < |R|$, suppose that there exists $x \in m$ such that $k[[x]] \subset R$. Then $G_{K^{ab}}$ is profinite free on $|K^{ab}|$ generators.

2. Proof of Theorem 1.1.

Let $C \to K$ be an integral curve over K with $x \in C(K)$ a smooth K-rational point. We show that actually $|C(K)| = |K|$, thus in particular, $C(K)$ is infinite. Since any two birationally equivalent curves have isomorphic Zariski open subsets, it is sufficient to prove the above assertion for any particular K-curve which is K-rationally equivalent to C and has a smooth K-rational point. Thus by general algebraic geometry non-sense, without loss of generality, we can suppose the following: $C \subset \mathbb{A}^2_K$, and $x \in C(K)$ is the origin of \mathbb{A}^2_K, and $C = V(f)$ is defined by an irreducible polynomial $f(X_1, X_2) \in K[X_1, X_2]$ of the form $f(X_1, X_2) = \delta X_2 + \tilde{f}$, where $\delta \neq 0$, and \tilde{f} is a polynomial in X_1, X_2 with vanishing terms in degrees < 2. Moreover, since $K = \text{Quot}(R)$ is the field of fractions of R, after “clearing denominators”, we can suppose that $f \in R[X_1, X_2]$, hence $\delta \in R, \delta \neq 0$.

Let us consider the “change of variables” $X_1 = \delta Y_1, X_2 = \delta Y_2$. Then in the new variables Y_1, Y_2 the curve C is defined by $g(Y_1, Y_2) = 0$, where

$$g(Y_1, Y_2) = f(\delta Y_1, \delta Y_2) = \delta^2 Y_2 + \tilde{f}(\delta Y_1, \delta Y_2) = \delta^2 [Y_2 + \tilde{g}(Y_1, Y_2)]$$

with $\tilde{g} \in R[Y_1, Y_2]$ having vanishing terms in degrees < 2. Equivalently, the K-curve C is defined in the (Y_1, Y_2)-affine plane by $h(Y_1, Y_2) := Y_2 + \tilde{g}(Y_1, Y_2) = 0$. And remark that $h(Y_1, Y_2) = 0$ defines a model, say C_h, of C over R, and the projection on the Y_1 affine line $C_h = \text{Spec } R[Y_1, Y_2]/(h) \to \mathbb{A}^1_R$

is smooth in a neighborhood of the origin of \mathbb{A}^2_R viewed as an R-rational point of C_h.

Coming back to the proof of Theorem 1.1, suppose that in the above context, R is Henselian with respect to a. For every $a \in a$, let us set $h_a(X) := h(a, X)$. Then by the definition of h and h_a, we get: $h_a(0) \in a$, and $h'_a(0) \in 1 + a$. Thus viewing this mod a, we get: \overline{a} is a simple root of $\overline{h}_a \in R[X]$. Since R is Henselian with respect to $a \neq (0)$, there exists a (unique) $b \in a$ such that $h_a(b) = 0$. Equivalently, $h(a, b) = 0$, i.e., (a, b) defines a K-rational point of C. Moreover, the set of rational points of this form is in bijection with a. Thus since $|a| = |R|$, and $|R| = |K|$, it follows that $C(K)$ has cardinality $|K|$; in particular $C(K)$ is in infinite, and K is large. This concludes the proof to Theorem 1.1.

Note that in the first part of the argument above we did not use the fact that R is Henselian with respect to a, and the above argument can be generalized to arbitrary dimensions:

Proposition 2.1. Let $K = \text{Quot}(R)$ be the quotient field of some infinite domain, and $X \to K$ be an integral d-dimensional K-variety with a smooth K-rational point $x \in X(K)$. Then X is birationally equivalent to a K-hypersurface $H \subset \mathbb{A}^{d+1}_K$ which contains the origin, and such that H is defined over R, and the projection on the first d-coordinates $H \to \mathbb{A}^d_R$ is smooth in a Zariski neighborhood of the origin viewed as an R-rational point of H.

Moreover, if R is Henselian with respect to an ideal $a \neq (0)$, then the image of the canonical projection $H(R) \to \mathbb{A}^d(R) = R^d$ contains a^d.

3
3. Two basic facts

Notations 3.1. Let R be a domain, $K := \text{Quot}(R)$, and $L|K$ a finite Galois extension. Let $S \subseteq L$ a finite Gal($L|K$)-invariant R-subalgebra such that $L = \text{Quot}(S)$ and $R = S \cap K$.

1) We denote by $\theta \in S$ a generator of $L|K$ with minimal polynomial $p_\theta(X) \in R[X]$, say $p_\theta(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$, and discriminant $\delta_\theta \in R$.

2) By general Hilbert decomposition theory, the following are equivalent:
 a) $p \in \text{Spec}(R)$ is totally split in $S|R$.
 b) There exists θ as above such that $\delta_\theta \not\in p$ and $p_\theta(X)$ has a root in R_p.
 c) There exists θ as above and $\alpha_1, \ldots, \alpha_n \in R_p$ with $\alpha_i \not\equiv \alpha_j \pmod{p_p}$ such that $p_\theta(X) = \prod_{\mu}(X - \alpha_\mu) \equiv p_\theta(X) \pmod{p_p}$.

3) A way to generate the above context is as follows: Let $\theta \in S$ and $p \in R[X]$ be as at point 1) above. Set $h(T,U) = T^n + a_{n-1}T^{n-1}U + \cdots + a_1TU^{n-1} + a_0U^n$. Then for every $r,s \in R$, $s \neq 0$, one has $s^n p_\theta(r/s) = h(r,s)$. And if $p \in \text{Spec}(R)$ satisfies: $s, \delta_\theta \not\in p$ and $h(r,s) \in p$, then p is totally split in $L|K$.

We will apply the remarks above to get a lower bound for the cardinality of the set of totally split prime ideals in $L|K$ as follows:

4) Let $m \in \text{Spec} R$, $\kappa \subseteq R$ a system of representatives for R/m, and $\kappa^* := \kappa \setminus m$. For a fixed non-zero $x \in m$, we say that a formal series of the form $E(x) := \sum_{n} \epsilon_n x^n$ with $\epsilon_n \in \kappa$ is x-adically convergent in R iff there exists $r_{E(x)} \in R$ such that for all $n > 0$ one has: $\sum_{\nu < n} \epsilon_\nu x^\nu \in x^nR$; and if so, we say that $r_{E(x)}$ is an x-adic limit of $E(x)$. Note that if $\sum_n \epsilon_n x^n$ and $\sum_n \eta_n x^n$ are x-adically convergent series as above having a common limit $r \in R$, then $\epsilon_n = \eta_n$ for all n (proof by induction on n). In particular, if $E_\kappa(x)$ is the set of all the x-adically convergent series $E(x)$ in R, and $E_\kappa(x) \subseteq R$ contains exactly one x-adic limit $r_{E(x)}$ for each $E(x) \in E_\kappa(x)$, then $E_\kappa(x) \longrightarrow E_\kappa(x)$, $E(x) \mapsto r_{E(x)}$, is one-to-one. Therefore we have $|E_\kappa(x)| \leq |R|$.

5) Let \mathcal{P} be a set of prime ideals $p \subseteq m$, $p \not\subseteq m$, of R such that $\mathcal{P}(x) := \{p \in \mathcal{P} \mid x \in p\}$ is non-empty for every $x \in m$. Finally let us denote $\mathcal{P}_{L|K} := \{p \in \mathcal{P} \mid p \text{ totally split in } L|K\}$.

Lemma 3.2. In the above Notations 3.1, let $r, x \in m$ satisfy $\mathcal{P}(r) \cap \mathcal{P}(ax) = \emptyset$, where $a := a_0 \delta_\theta$. Let $\Sigma = \sum_{a,r,x} \subseteq R$ be an infinite subset satisfying the following conditions:

i) $\mathcal{P}(u) \cap \mathcal{P}(arx) = \emptyset$ for all $u \in \Sigma$.

ii) $\mathcal{P}(u - v) \subseteq \mathcal{P}(x)$ for all distinct $u, v \in \Sigma$.

Then $\mathcal{P}_{L|K}$ has cardinality $|\mathcal{P}_{L|K}| \geq |\Sigma|$.

Proof. Since $h(T,U) = T^n + a_{n-1}T^{n-1}U + \cdots + a_0U^n \in R[T,U]$, and $r, x \in m$, we must have $h(ru, ax) \in m$ for all $u \in \Sigma$. Hence by the hypotheses on \mathcal{P}, there exists $p_u \in \mathcal{P}$ such that $h(ux, ax) \in p_u$. We first claim that $r, u, a, x \not\in p_u$. Indeed, since $h(T,U) \in R[T,U]$, and $h(ux, ax) \in p_u$, we have: If $ax \in p_u$, then $(ru)^n \in p_u$, hence $ru \in p_u$; and if $ru \in p_u$, then $a_0(ax)^n \in p_u$, hence $ax \in p_u$, because a_0a in R; thus finally $ru \in p_u$ iff $ax \in p_u$. Since $\mathcal{P}(r) \cap \mathcal{P}(ax) = \emptyset$ and $\mathcal{P}(u) \cap \mathcal{P}(arx) = \emptyset$ by hypothesis, we finally must have $ru, ax \not\in p_u$.

We conclude that $h(ux, ax) \in p_u$ implies $r, u, a, x \not\in p_u$ and in particular, $\delta_\theta, ax \not\in p_u$. Therefore, by point 3) above we get: $h(ux, ax) \in p_u$, then p_u is totally split in $L|K$.

Claim. Let $I \subset \Sigma$ be a finite set of cardinality $|I| > n$. Then $\cap_{u \in I} \mathcal{P}(h(\alpha, ax)) = \emptyset$.

By contradiction, let $p \in \mathcal{P}(h(\alpha, ax))$ for all $u \in I$. By Notations 3.1, 2 and 3, applied to p, there exist $\alpha_1, \ldots, \alpha_n \in R_p$ such that $\hat{h}(T,U) := \prod_p (T - \alpha_p U) \in R_p[T,U]$ satisfies: $h(T,U) - \hat{h}(T,U) \in p[T,U]$. Since $h(\alpha, ax) \in p$ for all $u \in I$, it follows that $\hat{h}(\alpha, ax) \in p$ for all $u \in I$. On the other hand, $\hat{h}(\alpha, ax) = \prod_p (\alpha - ax \alpha_p)$, hence for every $u \in I$ there exists μ_u such that $\alpha - ax \alpha_p \in p$. Since $|I| > n$, there exists $u \neq v$ in I such that $\mu_u = \mu_v$, and $\alpha - ax \alpha_p, \alpha - ax \alpha_p \in p$. Hence $\alpha - \alpha = r(u - v) \in p$, i.e., $\alpha - \alpha \in p$. Since $r, u, a, x \notin p$ by the discussion above, we get $u - v \in p$. But $\mathcal{P}(u - v) \subseteq \mathcal{P}(x)$ by hypothesis, hence $x \in p$, contradiction! The Claim is proved.

To conclude, let $\mathcal{P}_\Sigma := \cup_{u \in \Sigma} \mathcal{P}(\alpha(ax)), \Sigma_p := \{u \in \Sigma \mid h(\alpha, ax) \in p\}$ for $p \in \mathcal{P}_\Sigma$. Then the map $\varphi : \mathcal{P}_\Sigma \rightarrow 2^\Sigma$, $p \mapsto \Sigma_p$, has the properties: $\cup_{p \in \mathcal{P}_\Sigma} \Sigma_p = \Sigma$; and $|\Sigma_p| \leq n$ for all $p \in \mathcal{P}_\Sigma$. By cardinal arithmetic, and taking into account that Σ is infinite, it follows that the set $\{\Sigma_p \mid p \in \mathcal{P}_\Sigma\}$ has cardinality $|\Sigma|$, thus concluding the proof.

Lemma 3.3. In the above Notations 3.1, suppose that for every non-zero $r_0 \in m$, there exists $r_1 \in m$ such that $\mathcal{P}(r_0) \cap \mathcal{P}(r_1) = \emptyset$. Then for every non-zero $x \in m$, the following holds: $|\mathcal{P}(x)| = |\mathcal{P}(x)|$, and by applying Lemma 3.2.

Theorem 3.4. Let R be a domain whose internal closure \hat{R} in $K := \text{Quot}(R)$ is a Krull domain, e.g. R is Noetherian, or itself a Krull domain. Let \mathcal{V} be the set of valuations v on K defined by the localizations of \hat{R} at its minimal non-zero prime ideals. Then K endowed with \mathcal{V} is a Krull field, provided there exists a prime ideal $m \subset R$ of height > 1, a set of representatives $\kappa \subset R$ for R/m, and a non-zero $x \in m$, such that $|\mathcal{P}_\kappa(x)| = |\mathcal{P}(x)|$. This holds, if one of the following is true:

i) $|R| = N_0$; or $|R| = |R/m|; or R \leq 2^N_0$ and all $\sum_{n \in N} X^n, N \subseteq N$, belong to $\mathcal{E}_\kappa(X)$.

ii) m is countably generated, and $\cap_m m^n = (0)$, and all $\sum_{n \in \kappa} X^n, \kappa \subseteq \kappa$, belong to $\mathcal{E}_\kappa(X)$.

The hypothesis ii) holds if R is complete with respect to a finitely generated non-zero ideal $a \subseteq m$, and R/a is either Noetherian or a Krull domain, e.g., $R = R_0[[X_1, \ldots, X_n]]$, where R_0 is a Noetherian or a Krull domain such that $n + \text{Krull.dim}(R_0) > 1$.

Proof. First we prove that any of the conditions i), ii), implies $|\mathcal{E}_\kappa(x)| = |\mathcal{P}(x)|$: Let $\kappa \subset R$ be a system of representatives for R/m, which in case ii) equals the given one, respectively such that $0.1 \in \kappa$ in case i). Then in the case i), it follows directly from the hypothesis and (elementary) cardinal arithmetic that $|\mathcal{E}_\kappa(x)| = |\mathcal{P}(x)|$. In case ii), let $(x_i)_{i \in I}$ be a system of generators of m with $|I| \leq N_0$, and let M be the set of all the (formal) monomials in the x_i's. Then $|M| = N_0$. Further, the m-adic completion morphism $\hat{R} \rightarrow \hat{R}$ is injective, because $\cap_m m^n = (0)$. Since every $\hat{a} \in \hat{R}$ is represented by a series of the form $\sum u a_m u$ with $u \in M$
and $a_w \in \kappa$, we get: $|R| \leq |\tilde{R}| \leq |\kappa|^M \leq |\kappa|^{R_0}$. On the other hand, $|\mathcal{E}_n(x)| = |\kappa|^{R_0}$, and $|\mathcal{E}_n(x)| \leq |R|$. Finally, $|\tilde{R}| = |\kappa|^{R_0} = |\mathcal{E}_n(x)|$, as claimed.

Next we prove that K endowed with \mathcal{V} is a Krull field. By hypothesis we have: Every $v \in \mathcal{V}$ is a discrete valuation with valuation ring of the form $\mathcal{O}_v := \tilde{R}_q$ with $q \subset \tilde{R}$ a minimal non-zero prime ideal; and every non-zero $r \in \tilde{R}$ is contained in only finitely many q as above. In particular, since \tilde{R} is infinite, $|\mathcal{V}| \leq |\tilde{R}|$. Let $n \subset \tilde{R}$ be a prime ideal above m having height > 1. Since $\tilde{R}/m \subset \tilde{R}/n$ canonically, we can choose a set of representatives $\omega \subset \tilde{R}$ for \tilde{R}/n containing the above set of representatives κ for \tilde{R}/m. Let \mathcal{P} be the set of all the minimal non-zero prime ideals $q \subset n$ of \tilde{R}, and $\mathcal{W} \subset \mathcal{V}$ be the set of all the valuation in \mathcal{V} defined by the $q \in \mathcal{P}$. Since \tilde{R} is a Krull domain, the hypothesis of Lemma 3.3 is satisfied for n and \mathcal{P}. Hence by loc.cit. we have: If L/K is a finite Galois extension, then $|\mathcal{P}_{L/K}| \geq |\mathcal{E}_\omega(x)|$, or equivalently, $|\mathcal{W}_{L/K}| \geq |\mathcal{E}_\omega(x)|$. On the other hand, since $\kappa \subset \omega$, one obviously has $|\mathcal{E}_\omega(x)| \geq |\mathcal{E}_\kappa(x)|$. Further, since $\mathcal{W} \subset \mathcal{V}$, one has $\mathcal{W}_{L/K} \subset \mathcal{V}_{L/K}$. Thus taking into account all the above (in)equalities we finally get $|\tilde{R}| \geq |\mathcal{V}| \geq |\mathcal{V}_{L/K}| \geq |\mathcal{W}_{L/K}| \geq |\mathcal{E}_\omega(x)| \geq |\mathcal{E}_\kappa(x)| = |\tilde{R}|$. Since $|\tilde{R}| = |\tilde{R}| = |K|$, conclude that $|\mathcal{V}_{L/K}| = |K|$, as claimed. \hfill \Box

B) Specializations of Galois covers

Notations 3.5. Let K be a base field, and B a finite group. Let $\varphi : X \to \mathbb{P}^1_K$ be a finite, ramified B-cover, with branch locus $S \subset \mathbb{P}^1_K$. Suppose that X is smooth, and \mathbb{P}^1_K is the projective t-line, i.e., $\mathbb{P}^1_K = \text{Spec} K[t] \cup \text{Spec} K[1/t]$ such that $S \subset \text{Spec} K[t]$. Let $\kappa(X)$ be the function field of X, hence $\kappa(X)|K(t)$ is a Galois extension with $\text{Gal}(\kappa(X)|K(t)) = B$.

1) Let K_A be the relative algebraic closure of K in $\kappa(X)$. Then $A := \text{Gal}(K_A|K)$ shall be called the **arithmetical quotient** of B, and $C := \text{Aut}_{\mathbb{P}^1_K}(X)$ the **geometric part** of B. One has:
 a) The A-cover $\mathbb{P}^1_{K_A} \to \mathbb{P}^1_K$ is étale.
 b) The C-cover $X \to \mathbb{P}^1_{K_A}$ is such that X is geometrically integral over K_A.

Hence, first, the inertia groups of φ are contained in C, and second, they generate C.

2) Let $X_{\text{ram}} \subset X$ be the ramification locus of φ, and $X_s \subset X_{\text{ram}}$ be the fiber of φ at $s \in S$; and let $e_s := |I_s| > 1$ be the order of the inertia group I_s at $x \mapsto s$.

 - From now on suppose that K is Hilbertian and $\kappa(x)|K$ is separable for all $x \in X_{\text{ram}}$.
 - 3) Let $K_s|K$ be a minimal Galois extension such that $X_{\text{ram}} \subset X(K_s)$. For $s \in S$, consider the set of valuations $\mathcal{V}_s = \{v \mid v \text{ totally split in } K_s|K, \text{ and } vK \neq \ell \cdot vK \text{ for } \ell|e_s, \ell > 1\}$.
 - 4) Let $H_\varphi \subset K$ be a Hilbertian set such that for all $b \in H_\varphi$, the fiber of φ at $t = b$ is irreducible, and the resulting Galois extension $K_b|K$ is linearly disjoint from K_φ over K_A. Hence $\text{Gal}(K_b|K) = B = \text{Gal}(\kappa(X)|K(t))$ in a canonical way.
 - 5) Finally, for $b \in H_\varphi$, and $v \in \mathcal{V}_s$, let $\mathcal{V}_b := \{w \mid w \text{ prolongs } v \text{ to } K_b\}$, and for every $w \in \mathcal{V}_b$, let I_w be the inertia group at $w|v$.

Theorem 3.6. There exists a finite subset $\Sigma_\varphi \subset K^\times$ such that for every system of independent rank one valuations $(v_s)_{s \in S}$ with $v_s \in \mathcal{V}_s$ and $v_s(\Sigma_\varphi) = 0$, there exists $b \in H_\varphi$ satisfying:

1) For every $s \in S$, one has $\{I_w \mid w \in \mathcal{V}_s\} = \{I_x \mid x \in X_s\}$ canonically inside C.

2) In particular, $\text{Gal}(K_b|K_A)$ is generated by the I_w with $w \in \mathcal{V}_b$ and $s \in S$.

Proof. We begin by a preparation along the following three main steps:
Step 1. Let $A' := \text{Gal}(K'|K)$, and $B' := B \times_A A'$. Then setting $X' := X \times_{K_A} K'$, the resulting $\varphi' : X' \to \mathbb{P}^1_{K'}$ is a ramified B'-cover dominating both the étale A'-cover $\mathbb{P}^1_{K'} \to \mathbb{P}^1_K$, and the ramified B-cover $\varphi : X \to \mathbb{P}^1_K$. The geometric part of φ' is $C' = C \times_A \{1\} = C$, and under this identification, the inertia groups of φ' are identified with those of φ; precisely, if $X' \ni x' \mapsto x \in X$ are above $s \in S$, then $I_s = I_x \times_A \{1\} = I_x$.

In the same way, on the valuation-theoretical side one has: Let $K_b := K_fK_b$ be the compositum of K_b and K_f. Since $K_f[K$ and $K_b[K$ are linearly disjoint over K_A, we have $\text{Gal}(K'|K) = B \times_A A'$. Let $v_s \in \mathcal{V}_s$, and $w|v_s$ a prolongation to K_b, and $w := w|K_f$. Then by general decomposition theory, I_w projects onto I_w under $B' \to B$. On the other hand, since $v_s \in \mathcal{V}_s$ is totally split in $K_f[K$ (by the definition of \mathcal{V}_s), hence in $K_A = K_b \cap K_f$ too, we have: $I_w \subset C'$, and $I_w \subset C$. Since $C' = C \times_A \{1\} = C$ canonically, we have $I_w = I_w$.

Therefore, mutatis mutandis, we can and will suppose that $K_f = K_A$, i.e., all ramified points of $X \to \mathbb{P}^1_K$ are K_A-rational. Set $S' := S \times_K K_A$.

Step 2. Let R be the integral closure of $K_A[t]$ in $\kappa(X)$. For $s' \in S'$ above $s \in S$, let $x \in X_s$ be a fixed point above s'. Since R is a Dedekind ring, we can choose $u \in R$ satisfying:

- $v_{p_s}(u) = 1$, and $v_{p_s}(u - 1) = 1$ for $s \in C \setminus I_x$; and $\kappa(X) = K_A(t)[u]$.

Hence for $s \in S$, $s' \in S'$ and $x \in X_s$ as above, one has: $v_{p_s}(su) = 1$ for all $s \in I_x$, and $v_{p_s}(u(1 - s)) = 1$ for $s \in C \setminus I_x$. Let $f(U, t) \in K_A(t)[U]$ be the minimal polynomial of u over $K_A(t)$. Since $u \in R$, one has $f(U, t) := U^d + a_{d-1}(t)U^{d-1} + \cdots + a_0(t) \in K_A[U, t]$; and recalling that $e_s = |I_x|$, the following hold:

\[(*) \quad v_{p_s}(a_0(t)) = 1; \quad v_{p_s}(a_m(t)) \geq 1 \quad \text{for} \quad m < e_s; \quad v_{p_s}(a_{e_s}(t)) = 0. \]

Let $p_s : t - \theta_s \in K_A[t]$ define s'. Then the $\theta_s \in K_A$, $s' \in S'$, are distinct simple roots of $a_0(t)$ by condition $(*)$ above. In particular, the following hold:

\[(**) \quad a_{e_s}(\theta_s) \neq 0; \quad \text{and} \quad a_0(t) = p_s(t) b_s(t) \in K_A[t] \quad \text{with} \quad b_s(\theta_s) \neq 0 \quad \text{in} \quad K_A. \]

In particular, setting $R_s := R[1/b_s(t)]$, we have: x is the only zero of u in $\text{Spec} R_s$, and u is a uniformalizing parameter at x in R_s. Therefore, u is a prime element of R_s, and a uniformizing parameter at $x \in \text{Spec} R_s$. Hence there exist integers $\mu, \nu \geq 0$, and $u_{s'} \in R$ for $s' \in S'$, such that the following hold:

a) If $s \in I_x$, then $u_{s'}(u) = u_{s'}(b_{s'}(t)u) \in R_{s'}$, with $u_{s'}/b_{s'}(t) \in R_{s'}^\times$. In particular, there exists $\tilde{u}_{s'} \in R$ such that $\tilde{u}_{s'} u_{s'} = b_{s'}(t)\mu$ (for ν large enough).

b) If $s \in C \setminus I_x$, then $u_{s'}(u) = 1 + u_{s'}/b_{s'}(t) \in R_{s'}$, with $u_{s'}/b_{s'}(t) \in R_{s'}$.

And since $u_{s'}, \tilde{u}_{s'} \in R$, their minimal polynomials satisfy $f_{s'}(U, t), \tilde{f}_{s'}(U, t) \in K_A[U, t]$.

Let $\mathfrak{o} = \mathbb{Z}[\alpha_1, \ldots, \alpha_r] \subset K$ with $\alpha_i \neq 0$ be a \mathbb{Z}-algebra of finite type such that denoting by \mathfrak{o}_{K_A} its integral closure in K_A, the following hold: First, the ramified B-cover $\varphi : X \to \mathbb{P}^1_K$ is defined over \mathfrak{o}. Second, $f(U, t), p_s(t), f_{s'}(U, t), \tilde{f}_{s'}(U, t) \in \mathfrak{o}_{K_A}[U, t]$ for all $s' \in S'$ and $\sigma \in C$. Third, $\theta_s, a_{e_s}(\theta_s), b_{s'}(\theta_s), 1/a_{e_s}(\theta_s), 1/b_{s'}(\theta_s) \in \mathfrak{o}_{K_A}$ for all $s' \in S'$ and $s \in S$.

Definition of the set $\Sigma_{s'}$: We define $\Sigma_{s'} \subset K^\times$ to be the set of generators $\Sigma_{s'} := \{\alpha_1, \ldots, \alpha_r\}$.

Notice that $a_{e_s}(\theta_s), b_{s'}(\theta_s) \in \mathfrak{o}_{K_A}$ for all $s' \in S'$. Hence if $v \in \mathcal{V}_s$ satisfies $v(\Sigma_{s'}) = 0$, then $\mathfrak{o} \subset \mathcal{O}_v$; and \mathfrak{o}_{K_A} is an algebraic closure K^a of K, then $\mathfrak{o}_{K_A} \subset \mathcal{O}_{v^a}$, and in particular, $a_{e_s}(\theta_s), b_{s'}(\theta_s)$ are v^a-units.
Step 3. Recall that for \(v \in \mathcal{V}_s \), one has by definition: First, \(vK \neq \ell \cdot vK \) for \(\ell \in \mathcal{E}_s \); hence there exists \(\pi_s \in K^\times \) such that \(v(\pi_s) > 0 \) and \(v(\pi_s) \) has order \(\mathcal{E}_s \) in \(vK/(\ell \cdot vK) \). Second, \(v \) is totally split in \(K^A/K \), hence since \(v \) has rank one, \(K \) is dense in \(K^A \) endowed with \(v^a \). By Geyer [Ge], we have: Since \((v_s)_{s \in S} \) are independent by hypothesis, there exists \(b \in H_v \) such that \(v_s^a(b - \theta_s') = v_s(\pi_s) > 0 \), \(s \in S \). Further, since \(a_{v_s}(t) \), \(b_s^a(t) \) have \(v^a \)-integral coefficients, and \(v_s^a(b - \theta_s') > 0 \), and \(a_{v_s}(\theta_s'), b_s^a(\theta_s') \) are \(v^a_s \)-units, it follows that \(a_{v_s}(b), b_s^a(b) \) are \(v^a_s \)-units too. Recalling that \(K_b \ll K \) with \(\text{Gal}(K_b/K) = B \) is the fiber of \(X \to \mathbb{P}^1_K \) at \(t = b \), we have:

Claim. Let \(w \) be the restriction of \(v^a \) to \(K_b \). Then \(I_w = I_w \) inside \(B \).

Indeed, since \(a^0(b) = (b - \theta_s') \), \(b_s^a(b) \), and \(w(b - \theta_s') = v^a_s(b - \theta_s') = v_s(\pi_s) > 0 \), one has \(w(a^0(b)) = w(\pi_s) > 0 \). Hence \(f(U, b) = U^n + \cdots + a^0(b) \) has a root \(\xi_s^a \) such that \(w(\xi_s^a) > 0 \).

Let \(\mathcal{R} \subset R \) be the integral closure of \(\mathcal{O}_{u_s}[t] \) in \(R \). Since \(\sigma_{K_b} \) is integral over \(\sigma \), and \(u, u_{\text{res}}, \bar{u}_{\text{res}} \) are integral over \(\sigma_{K_b}[t] \) (by the definition of \(\sigma \) and \(\sigma_{K_b} \)), it follows that \(u, u_{\text{res}}, \bar{u}_{\text{res}} \) are integral over \(\sigma[t] \subset \mathcal{O}_{u_s}[t] \), hence \(u, u_{\text{res}}, \bar{u}_{\text{res}} \in \mathcal{R} \). Let \(\mathcal{O}_b \) be the integral closure of \(\mathcal{O}_{u_s} \) in \(K_b \). Then \(B \) acts on \(\mathcal{O}_b \), and the \(B \)-equivariant projection \(\Psi : R \to K_b \) defined by \((u, t) \mapsto (\xi_s^a), b \), has a \(B \)-equivariant restriction \(\psi : \mathcal{R} \to \mathcal{O}_b \). Recall that \(a^0(t) = (t - \theta_s') b_s^a(t) \) in \(\sigma_{K_b}[t] \), hence in \(\mathcal{O}_w[t] \), and \(b_s^a(b) \in \mathcal{O}_w^\times \). Therefore, the canonical \(B \)-equivariant projections \(\Psi : R_{s'} \to K_b \), and \(\psi : R_{s'} \to \mathcal{O}_b \), where \(\mathcal{R}_b := \mathcal{R}[1/b_s^a(t)] \).

Hence we have:

- a') If \(\sigma \in I_w \), then \(\sigma(\xi_s^a) = \xi_s^a \psi(u_{\text{res}})/b_s^a(b)^v \) in \(\mathcal{O}_b \) and \(\psi(u_{\text{res}})/b_s^a(b)^v \in \mathcal{O}_b^\times \).
- b') If \(\sigma \in C \setminus I_w \), then \(\sigma(\xi_s^a) = 1 + \xi_s^a \psi(u_{\text{res}})/b_s^a(b)^v \) in \(\mathcal{O}_b \) and \(\psi(u_{\text{res}})/b_s^a(b)^v \in \mathcal{O}_b \).

And for \(\sigma \in I_w \), we have \(\psi(u_{\text{res}}) \psi(\bar{u}_{\text{res}}) = b_s^a(b)^v \in \mathcal{O}_w^\times \), hence \(\psi(u_{\text{res}}) \in \mathcal{O}_w^\times \). Therefore:

- a'') If \(\sigma \in I_w \), then \(w(\sigma(\xi_s^a)) = w(\xi_s^a) > 0 \).
- b'') If \(\sigma \in C \setminus I_w \), then \(w(\sigma(\xi_s^a)) = 0 \).

On the other hand, \(a^0(b) = N_{K_b/K_b}(\xi_s^a) = \prod_{\sigma \in C} \sigma(\xi_s^a) \), and \(w(a^0(b)) = w(\pi_s) \). Hence the following hold:

First, \(w(\pi_s) = w(a^0(b)) = |I_w| \psi(\xi_s^a) \); hence since \(w(\pi_s) = v_s(\pi_s) \) has order \(e_s = |I_w| \) in \(v_s K/(e_s \cdot v_s K) \) we get \(e(w|v_s) = |I_w| \); thus \(|I_w| \geq |I_w| \). Second, if \(\sigma \in C \setminus I_w \), then by b'') we have: \(0 = w(\sigma(\xi_s^a)) = (w \circ \sigma)(\xi_s^a) \), hence \(\sigma \notin D_w \) because \(w(\xi_s^a) > 0 \); and since \(v_s \) is totally split in \(K^A/K \), one has \(D_w \subseteq C \), thus \(D_s \subseteq I_w \). Hence since \(|D_w| \geq |I_w| \geq |I_w| \), we conclude that \(|D_w| = |I_w| \). Therefore, \(D_w = I_w = I_x \subseteq D_x \), thus proving the Claim.

To 1): Recall that by Hilbert decomposition theory, \(\mathcal{V}_s \cong B/D_w \), and \(X_s \cong B/D_x \) as \(B \)-sets. Since \(D_w = I_w = I_x \), we see that \(\mathcal{V}_s \) projects \(B \)-equivariantly onto \(X_s \), the fibers being isomorphic to \(D_x/I_x \). This concludes the proof of assertion 1).

To 2): Since \(I_w \) with \(x \in X_s, s \in S \), generate \(C \), the same is true for \(I_w \) with \(w \in V_{\mathcal{V}} \) and \(s \in S \), by assertion 1). Hence by Hilbert decomposition theory, \(K_b/K^A \) has no non-trivial subextension in which all the \(v_s, s \in S \), are unramified.

\[\square \]

4. A GENERALIZATION OF THEOREM 1.2

Definition/Remarks 4.1. Let \(\mathbb{N} \) be an infinite cardinal.

1) A field \(K \) endowed with a set of non-equivalent valuations \(\mathcal{V} \) shall be called a **generalized \(\mathbb{N} \) Krull field**, respectively a **generalized Krull field** provided \(\mathbb{N} = |K| \), if the following hold:

- i) If \(\Sigma \subset K^\times \) has cardinality \(|\Sigma| < \mathbb{N} \), then \(\mathcal{V}_\Sigma := \{v \in \mathcal{V} \mid v(\Sigma) \neq 0\} \) has \(|\mathcal{V}_\Sigma| < \mathbb{N} \).
- ii) For every finite Galois extension \(L/K \), and every integer \(n > 1 \), the set
\[\mathcal{V}_{L,K,n} := \{ v \in \mathcal{V} \mid v \text{ totally split in } L|K, vK \neq \ell \cdot vK \text{ for } \ell|n, \ell > 1 \} \text{ has } |\mathcal{V}_{L,K,n}| \geq \aleph. \]

Note that in particular, the Krull fields are exactly the generalized \(\aleph_0 \) Krull fields.

2) Prominent examples of Krull fields are the following:

a) The global fields (by the Chebotarev Density Theorem).

b) The function fields \(K[k] \) with \(\text{tr.deg}(K[k]) > 0 \). (Indeed, by point 3 below, it is sufficient to consider the case \(K = k(t_1, \ldots, t_d) \) is a rational function field, etc.)

c) The quotient fields of domains \(R \) as in Theorem 3.4

3) The class of generalized \(\aleph \) Krull fields is closed under finite field extensions.

Definitions/Notations 4.2. For an embedding problem \(EP = (\gamma : G_K \to A, \alpha : B \to A) \) over \(K \), let \(K_\beta \) be the fixed field of \(\ker(\gamma) \), hence \(\text{Gal}(K_\beta|K) = A \) canonically. And for proper solutions \(\beta \) of \(EP \), let \(K_\beta \) be the fixed field of \(\ker(\beta) \), hence \(\text{Gal}(K_\beta|K) = B \) canonically.

1) A family of proper solutions \(\{ \beta_j \}_{j \in J} \) of \(EP \) is called independent, if for all \(j \in J \) one has: \(K_{\beta_j} \) and the compositum \(L_j := \cup_{j \neq j'} K_j' \) are linearly disjoint over \(KA_A \).

2) If \(K \) endowed with \(\mathcal{V} \) is a generalized \(\aleph \) Krull field, a proper solution \(\beta \) of \(EP \) is called totally ramified, if \(K_\beta|KA_A \) has no proper subextension in which all the \(v \in \mathcal{V} \) are unramified.

Theorem 4.3. Let \(K \) endowed with a set of rank one valuations \(\mathcal{V} \) be a generalized \(\aleph \) Krull field. Suppose that \(K \) is large and Hilbertian. Then every non-trivial finite split embedding problem for \(G_K \) has at least \(\aleph \) independent and totally ramified proper solutions.

Proof. Let \(EP = (\gamma : G_K \to A, \alpha : B \to A) \) be a non-trivial finite split embedding problem over \(K \), and \(EP_1 = (\gamma \circ pr_i : G_{K(t)} \to A, \alpha : B \to A) \) be the non-trivial finite split embedding problem for \(G_{K(t)} \). By Theorem A of Pop [P], \(EP_1 \) has proper regular solutions \(\beta_t \), which means that if \(K_A \subseteq K(t)_{\beta_t} \) are the fixed fields of \(\ker(\gamma) \) in \(K^s \), respectively of \(\ker(\beta_t) \) in \(K(t)^s \), then \(K(t)_{\beta_t} \cap K^s = KA_A \). Moreover, if \(\varphi : X \to K^s \) is the \(B \)-ramified cover defining \(\beta_t : G_{K(t)} \to B \), then sorting through the proof of loc.cit., one can see that the ramifications points of \(\varphi \) are actually \(K_\varphi \)-rational, where \(K_\varphi|KA_A \) is some cyclotomic extension. Hence Theorem 3.6 is applicable here.

Using Zorn’s Lemma, let \(\{ \beta_j \}_{j \in J} \) be a maximal set of independent proper solutions of \(EP \), given by specializing \(\varphi \) as in Theorem 3.6, and note that these solutions are totally ramified by assertion 2) of loc.cit. We claim that \(|J| \geq \aleph \). Indeed, by contradiction, suppose that \(|J| < \aleph \). For every \(\beta_j \), set \(K_{\beta_j} = K|\xi_j| \), and let \(p_j(T) = T^n + a_{j,n-1}T^{n-1} + \cdots + a_{j,0} \in K[t] \) be the minimal polynomial of \(\xi_j \), and \(\delta_j \in K^s \) its discriminant. If \(v \in \mathcal{V} \) satisfies: \(p_j(T) \in \mathcal{O}_v[T] \) and \(v(\delta_j) = 0 \), then by Hilbert decomposition theory, \(v \) is unramified in \(K_{\beta_j}|K \). Hence if \(\Sigma_j := \{ \delta_j, a_{j,0}, \ldots, a_{j,n-1} \} \cap K^s \), we have: if \(v \) is ramified in \(K_{\beta_j}|K \), then \(v(\Sigma_j) \neq 0 \); or equivalently, \(\mathcal{V}_j := \{ v \in \mathcal{V} \mid v \text{ is ramified in } K_{\beta_j}|K \} \subseteq \{ v \mid v(\Sigma_j) \neq 0 \} =: \mathcal{V}_{\Sigma_j} \).

Hence setting \(\Sigma_j := \cup_{j \in J} \mathcal{V}_j \), we have \(\mathcal{V}_{\Sigma_j} := \{ v \in \mathcal{V} \mid v(\Sigma_j) \neq 0 \} = \cup_{j \in J} \mathcal{V}_{\Sigma_j} \). Therefore we get \(\mathcal{V}_j := \cup_{j \in J} \mathcal{V}_j \subseteq \cup_{j \in J} \mathcal{V}_{\Sigma_j} =: \mathcal{V}_{\Sigma_j} \). Since each \(\Sigma_j \) is finite, and we supposed that \(|J| < \aleph \), it follows that \(\Sigma_j = \cup_{j \in J} \mathcal{V}_j \) has cardinality \(|\Sigma_j| < \aleph \). But then by condition i) in the definition of \(\mathcal{V} \), we have \(|\mathcal{V}_{\Sigma_j}| < \aleph \); hence \(|\mathcal{V}_j| < \aleph \) because \(\mathcal{V}_j \subseteq \mathcal{V}_{\Sigma_j} \). Hence by condition ii) in the definition of \(\mathcal{V} \), and with \(K_\varphi \) and \(es \) as in Notations 3.5 one has: \(|\mathcal{V}_{K_\beta|K_\varphi} \setminus \mathcal{V}_j| \geq \aleph \) for each \(s \in S \). Since \(S \) is finite, we can choose a system of independent valuations \((v_s)_{s \in S} \) with \(v_s \in \mathcal{V}_{K_\beta|K_\varphi} \setminus \mathcal{V}_j \). For this system \((v_s)_{s \in S} \), consider a solution \(\beta \) of \(EP \) as given by Theorem 3.6. Let \(L_j|K \) be the compositum of all the \(K_{\beta_j} \), \(j \in J \). We claim that \(L_j \cap K_\beta = K_A \). Indeed, since \(v_s \not\in \mathcal{V}_j \), the \(v_s \), \(s \in S \), are unramified in \(K_\beta|K \), for all \(j \in J; \)
hence in $L_J|K$. Hence the us are unramified in $L_J\cap K_\beta$ too. But then by assertion 2) of Theorem 3.6 we get $L_J\cap K_\beta = K_A$. Thus the family of distinct totally ramified solutions $\{\beta\} \cup \{\beta_j\}_{j \in J}$ is independent and contradicts the maximality of $\{\beta_j\}_{j \in J}$. □

5. Proof of Theorem 1.3.

First, K is large, by Theorem [11] and Hilbertian by Weissauer [W], Theorem 7.2, because the integral closure of R is a Krull domain with Krull.dim > 1. Hence every split non-trivial embedding problem for G_K has $|K|$ proper solutions by Theorems [12] and [3.4]. Second, the same is true correspondingly for $G_{K^{ab}}$, by [Ha2], Theorem 2.4. Finally, $cd(K^{ab}) \leq 1$, by Colliot-Thélène–Ojanguren–Parimala [COP], Theorem 2.2, and [Ha2], Theorem 4.4, if $\text{char}(K) > 0$. One concludes by applying [H–S], Theorem 2.1.

Thanks: I would like to thank D. Harbater, M. Jarden, and others for inspiration and discussions; and E. Paran for pointing out a gap in the first version of the manuscript, and the referee for his useful comments.

References

Department of Mathematics, University of Pennsylvania
DRL, 209 S 33rd Street, Philadelphia, PA 19104, USA
E-mail address: pop@math.upenn.edu
URL: http://math.penn.edu/~pop